> Член-корреспондент АН СССР Н. С. НАМЕТКИН, В. К. КОРОЛЕВ, О. В. КУЗЬМИН

СИНТЕЗ АМИННОГО КОМПЛЕКСА ТРИХЛОРГЕРМАНА HGeCl₃·Et₃N НА ОСНОВЕ ВОДОРОДНО-ГАЛОИДНОГО ОБМЕНА МЕЖДУ ЧЕТЫРЕХХЛОРИСТЫМ ГЕРМАНИЕМ И НЕКОТОРЫМИ ОРГАНОКРЕМНИЙГИДРИДАМИ

В последнее время появились работы $(^4,^2)$, посвященные изучению недавно открытых аминных комплексов трихлоргермана $HGeCl_3R_3$ N (R=H,Alk), в которых убедительно показано, что в ряде случаев они обладают более высокой реакционной способностью, чем аналогичные соединения трихлоргермана с простыми эфирами.

Аминные комплексы могут быть с успехом применены для получения алкилтрихлоргерманов (2), причем этот метод имеет ряд преимуществ перед методами получения алкилтрихлоргермана прямым синтезом или при помощи соединений Alk₄M (M = Sn, Pb) (3).

В данном сообщении приводятся результаты работы, проведенной с целью изучения возможности синтеза аминных комплексов трихлоргермана по реакции водородно-галоидного обмена между четыреххлористым германием и промышленно доступными хлоркремнийгидридами в присутствии третичного амина *.

В работе (4) мы сообщали о водородно-галоидном обмене между органокремний гидридами и четыреххлористым германием в среде абсолютного диэтилового эфира, который приводит к образованию с высокими выходами эфирата трихлоргермана $HGeCl_3 \cdot 2Et_2O$

$$\begin{array}{c} \mathbf{R}_{n}\mathrm{SiH}_{4-n} + \mathrm{GeCl_{4}} \xrightarrow[t=34-35^{\circ}\mathrm{C}]{\text{Et}_{2}\mathrm{O}} + \mathbf{R}_{n}\mathrm{SiClH}_{3-n} \\ \mathbf{R}_{n} = \mathrm{Alk, Ar, } \quad n = 1-3. \end{array} \tag{1}$$

Найдено, что введение атома Cl в молекулу кремнийгидрида в значительной степени препятствует протеканию изучаемой реакции. Так, Me₂SiHCl, Et₂SiHCl, PhSiH₂Cl не взаимодействуют с GeCl₄ в условиях, аналогичных приведенным для схемы (1). Однако если к смеси GeCl₄, Et₂O, RR'SiHCl добавить до насыщения заранее приготовленный эфират HGeCl₃· \cdot 2Et₂O, который частично растворим в серном эфире, то приведенные органохлоркремнийгидриды довольно медленно (9—15 час.) при кипячении реагируют с GeCl₄ с образованием соответствующих дихлоридов кремния и эфирата HGeCl₃· \cdot 2Et₂O (выход до 60%).

Дальнейшее увеличение числа атомов хлора в молекуле кремнийгидрида приводит к еще большей дезактивации гидридного водорода. Так, MeSiHCl₂, EtSiHCl₂, PhSiHCl₂ и HSiCl₃ в изученных условиях оказались полностью неспособными к водородно-галоидному обмену с GeCl₄.

$$RSiHCl_2 + GeCl_4 + Et_2O$$
 (H36) $\rightarrow HGeCl_3 \cdot 2Et_2O + RSiCl_3$.

^{*} Во всех случаях использовался триэтиламин, поскольку комплекс $HGeCl_3 \cdot Et_3N$ представляет собой жидкость, что в значительной степени облегчает его выделение и очистку.

Наиболее интересные результаты по селективному восстановлению GeCl₄ были получены при исследовании этой реакции в присутствии эквивалентных количеств триэтиламина, поскольку в этом случае водородногалоидный обмен легко протекает между GeCl₄ и хлоркремнийгидридами самого различного состава и строения, при этом с почти количественными выходами образуется комплекс HGeCl₃ · Et₃N

$$RR'SiHCl + GeCl_4 + Et_3N \rightarrow HGeCl_3 \cdot Et_3N + RR'SiCl_2$$
,

где R=Alk, Ar, H; R'=Cl, Alk, Ar.

Однако наиболее быстро и полно реакция проходит при использовании HSiCl₃, в связи с чем эта система была изучена наиболее подробно. Взакмодействие трихлорсилана с GeCl₄ в присутствии Et₃N проходит со значительным выделением тепла, поэтому реакцию удобно вести в среде инертного углеводородного растворителя при охлаждении реакционной смеси до 0°. Оптимальное соотношение исходных реагентов HSiCl₃:GeCl₄: :Et₃N = 1:1:1. Выбор соотношения хлоркремнийгидрид:четыреххлористый германий основывался также и на результатах предыдущей работы (4), в которой показано, что комплекс трихлоргермана с эфиром легко восстанавливается кремнийгидридами в основном до полигермана, поэтому избыток хлоркремнийгидрида в изучаемой реакции мог также привести к появлению нежелательных побочных продуктов. Хотя позднее, на основании изучения взаимодействия комплекса HGeCl₃·Et₃N с различными кремнийгидридами, установлено, что он восстанавливается гораздо труднее эфирата HGeCl_s·2Et₂O. Так, восстановление эфирата трихлоргермана метилфенилсиланом до полигермана заканчивается за 2-3 часа, в тех же условиях на восстановление комплекса HGeCl₃· Et₃N необходимо затратить около 100 час., а хлоркремнийтидриды, такие как MeSiHCl₂ и HSiCl₃, в реакцию вообще не вступают.

Отметим, что на скорость образования комплекса HGeCl₃· Et₃N в значительной степени оказывает влияние порядок прибавления реагентов. Если к GeCl4 и Et5N в гексане добавлять HSiCl3, то реакционная смесь превращается в темно-коричневую массу, которая только при длительном кипячении переходит в прозрачный, почти неокрашенный комплекс HGeCl₃. · Et₃N. Более удобно проводить реакцию, добавляя порциями Et₃N в охлаждаемый льдом гексановый раствор HSiCl₃ и GeCl₄. При этом сразу образуются два несмешивающихся слоя. Нижний слой, представляющий собой комплекс HGeCl₃· Et₃N, в самом конце реакции окрашивается в красный цвет. После добавления всего количества Et₃N реакционную смесь перемешивали при комнатной температуре около часа. При этом красная окраска исчезает, и комплекс превращается в прозрачную, слегка желтоватую подвижную жидкость, которая легко отделялась на делительной воронке и промывалась несколькими порциями гексана. Выходы комплекса НGeCl₃. · Et₃N близки к теоретическим (98%). Примерно такие же результаты получены при замене HSiCl₃ на алкил- и арилхлоркремнийгидриды, такие как MeSiHCl₂, EtSiHCl₂, PhSiHCl₂, Me₂SiHCl, Et₂SiHCl, PhMeSiHCl и другие, однако в этом случае время реакции увеличивается с 1 до 40 час. (табл. 1).

В дальнейшем было установлено, что аминный комплекс трихлоргермана также образуется, если вместо свободного триэтиламина взять его хлоргидрат Et_sNHCl.

$$RR'SiHCl + GeCl_4 + Et_3NHCl \rightarrow HGeCl_3 \cdot Et_3N + RR'SiCl_2 + HCl.$$

При этом из реакционной массы выделяется газообразный HCl и образуются соответствующие хлориды кремния. Синтез комплекса HGeCl₃· Et₃N этим методом можно проводить или в колбе с обратным холодильником при температуре кипения реакционной смеси или в запаянных ампулах (в случае легкокипящих кремнийгидридов) при температуре 120—150°.

Исходный кремнийгид- рид	Выход HGeCl _a · ·Et,N, %	Выход хлорси- лана, %	Продол- жит. ре- акции, час.	Исходный кремнийгид- рид	Bыход HGeCl ₂ ·Et ₃ N, %	Продолжит. реакции, ча с .	
HSiCl ₃	98	74	4	MeSiHCl ₂	78	25	
1101013	00	1.4	1	$\mathrm{EtSiHCl}_{2}$	86	25	
${ m MeSiHCl_2}$	87	64	40	PhSiHCl₂ Me₂SiHCl	82 80	$\frac{25}{15}$	
${ m EtSiHCl_2}$	97	88	20	$\mathrm{Et_{2}SiHCl}$	85	20	
PhSiHCl ₂	98	70	1	MePhSiHCl Ph₂SiHCl	78 74	20 45	
- -				$PhSiH_{2}Cl$	77	0,5	
Me_2SiHCl	78	_	20	HSiCl ₃	96	0,5	
Et ₃ SiH	87	70	7	HSiO _{1,5}	Не реагирует	1 2-	
Ph₃SiH	92	_	7		Примечание. Опыты проводились в ампулах при $t=150^\circ$ С.		

Выходы комплекса $HGeCl_3 \cdot Et_3N$ достигают 80-95% (см. табл. 2). Образование комплекса $HGeCl_3 \cdot Et_3N$ и выделение газообразного HCl указывает на то, что $HGeCl_3$ ведет себя в этом случае, по-видимому, как кислота более сильная, чем HCl. Это подтверждается тем, что свободный трихлоргерман, а также его эфират $HGeCl_3 \cdot 2Et_2O$ вытесняет хлористый водород из хлоргидрата триэтиламина

 $\text{Et}_3\text{NHCl} + \text{HGeCl}_3 \rightarrow \text{HGeCl}_3 \cdot \text{Et}_3\text{N} + \text{HCl}.$

Реакция протекает с выделением тепла.

В настоящее время не представляется до конца ясным, по какому механизму проходит это взаимодействие. Хотя уже сейчас можно предположить, что активная частица, образующаяся из $HGeCl_3$, имеет ионный $(GeCl_3^-)$ или карбеноидный $(:GeCl_2)$ характер. Это предположение подтверждается тем фактом, что при взаимодействии хлоргидрата триэтиламина с $DGeCl_3$ образуется $HGeCl_3 \cdot Et_3N$, а не $DGeCl_3 \cdot Et_3N$, что установлено с помощью данных п.м.р. Общий состав комплекса $HGeCl_3 \cdot Et_3N$, полученного различными методами, был доказан на основании данных элементарного анализа и спектров п.м.р., которые идентичны спектрам эталонного образца (2). Кроме того, из полученного комплекса был синтезирован по известной методике (2) CH_3GeCl_3 с выходами 80-86%.

Институт нефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва Поступило 20 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. В. Тананаев, Б. Ф. Джуринский, Ю. Н. Михайлов, ЖНХ, 9, 1570 (1964). ² Т. К. Гар, Е. М. Берлинер и др., ЖОХ, 40, 2601 (1970). ³ В. Ф. Миропов, А. Л. Кравченко, ДАН, 158, № 3, 656 (1964). ⁴ Н. С. Наметкии, О. В. Кузьмии и др., ДАН, 201, № 5 (1970).