Доклады Академии наук СССР 1972. Том 205, № 5

УДК 612.352.2-06:616.34:577.3

БИОХИМИЯ

В. Г. ПАРТЕШКО, М. С. ПАВЛОВСКАЯ, А. А. ЛЕСЮИС

СНИЖЕНИЕ УРОВНЯ ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ В ПЕЧЕНИ ЖИВОТНЫХ КАК СЛЕДСТВИЕ ИНТЕНСИФИКАЦИИ СВОБОДНОРАДИКАЛЬНЫХ ПРОЦЕССОВ В БИОЛИПИДАХ ПОЛ ВЛИЯНИЕМ ЭКЗОГЕННЫХ ЛИПОПЕРЕКИСЕЙ

(Представлено академиком Е. М. Крепсом 8 XI 1971)

Органические перекиси (1, 2), в том числе и липоперекиси, при своем распаде способны выступать в качестве источника активных свободных радикалов.

На примере перекисей подсолнечного масла (3) методом э.п.р. показано, что такие липоперекиси при своем распаде способны инициировать реакции образования свободных радикалов из непарамагнитных молекул. Наряду с этим было установлено (4, 5), что высокоперекисные масла в организме животных могут приводить к интенсификации свободнорадикальных процессов в тканевых биополимерах. Это сопровождается повышением уровня липоперекисей и снижением уровня липидных биоантиоксидантов в тканях, а также дезорганизацией клеточного метаболизма и разрушением клеточных структур.

Принимая во внимание, что полиненасыщенные жирные кислоты входят в состав структурных биолицидов клетки, представляло интерес выяснить влияние экзогенных липоперекисей на уровень этих кислот в ткани цечени.

Опыты проводились на белых беспородных крысятах. Для этого было взято две группы (I, II) по 12 животных в каждой с исходным весом одного животного 135—140 г. Группа I была опытной, группа II — контрольной. Животные обеих групп содержались на стандартной лабораторной дисте, состав которой описан в пашей работе (5). Липидным компонентом корма служило высоконенасыщенное подсолнечное масло (содержание липолевой кислоты 59%).

В качестве источника липидных перекисей животные I группы получали с кормом подсолнечное масло, специально окисленное ускоренным кинетическим методом (2) при температуре 85° и продувании воздуха со скоростью 60 л/час. Животные II группы получали исходное неокисленное масло.

Характеристика масла до и после окисления следующая:

	До окисления	После окисления
Перекиси в % по йоду	0,05	2,00
Эпокиси в % кислорода	0,015	0,020
Кислотное число в мг КОН	2,2	2,2

Из приведенных данных видно, что в результате окисления резко возросло лишь количество перекисей. Остальные показатели изменились несущественно. Во избежание дальнейшех изменений оба образца масел были деаэрированы и на протяжении всего опыта на животных хранились при температуре 0° в атмосфере CO₂.

Продолжительность опытов на животных составила 10 недель. Систематическими наблюдениями было установлено, что опытные животные

заметно отставали в весе от контрольных. По истечении 10 недель животные были убиты. В гомогенатах свежей печени исследовали содержание полиненасыщенных жирных кислот по методике (⁶). Часть гомогената была использована для выделения липидов по методике (⁷) с последующим исследованием методом э.п.р. их способности инициировать свободнорадикальные реакции. Приготовление образцов липидов для исследования и запись спектра э.п.р. проводились по методике, описанной в работе (⁸).

Результаты исследования полиненасыщенных жирных кислот в гомогенатах печени представлены в табл. 1.

Из приведенных в табл. 1 данных видно, что в печени опытных животных, получавших с кормом высокоперекисное масло, произошло резкое

снижение уровня всех пяти полиненасыщенных жирных кислот, хотя жирнокислотный состав липидного компонента корма животных обеих групп был практически одинаковым. Это свидетельствует о том, что причиной снижения уровня полиненасыщенных жирных кислот в тканевых липидах печени является действие экзогенных липоперекисей.

Полученные данные можно объяснить следующим образом. Экзогенные липоперекиси в организме под влиянием тканевых катализаторов (⁹) способны подвергаться распаду с образованием свободных радикалов, которые, в свою очередь, инициируют свободнорадикальное окисление тканевых биолипидов (¹⁰), в том числе и полиненасыщенных жирных кислот. Это подтверждается данными, полученными нами методом э.п.р.

Проведенные исследования с помощью метода э. п. р. показали, что липиды печени животных, получавших с кормом высокоперекисное масло, пнициируют из непарамагнитных молекул 3,3′, 5,5′-тетра-трет-бутилиндофенола образование свободных радикалов. Последние регистрируются при нагре-

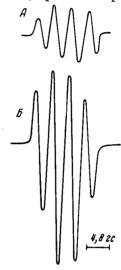


Рис. 1. Спектр э.п.р., возникающий при взаимодействии липидов печени животных, получавших высокоперекисное масло, с замещенным индофенолом при 80° и при 100°

вании образдов до 80° в спектре э.п.р., состоящего из четырех компонент (рис. 1~A). С повышением температуры до 100° интенсивность спектра э.п.р. не возрастает, однако его характер не изменяется (рис. 1E). В то же время в образдах липидов печени контрольных животных в указанных условиях сигнал э.п.р. не возникает, что указывает на отсутствие у этих липидов способности к радикалообразованию с достаточной скоростью.

Сверхтонкая структура записанного спектра э.п.р. (рис. 1) отлична от сверхтонкой структуры первичного индофеноксильного радикала, ко-

Таблица 1 Сравнительный уровень полиненасыщенных жирных кислот в печени животных

Группы животных	Количество животных	Среднее содержание в свежей ткани в мг-%				
		докозагексае- новая	эйкозапента е- новая	арахидоно- вая	пквонэконик	линолевая
I II	11 11	$\begin{array}{c c} 24\pm1.7 \\ 43\pm2.8 \\ P < 0.001 \end{array}$	$10\pm1,0$ $16\pm3,0$ $P < 0,05$	$20\pm1,2$ $35\pm2,4$ $P<0,01$	$\begin{array}{ c c c c }\hline 62\pm5,2\\236\pm13,0\\P<0,001\\\hline \end{array}$	137±8,0 382±11,5 P<0,001

торый, как известно (11), устойчив лишь до 70°, а затем быстро превращается во вторичный, более стабильный радикал, дающий наблюдаемый

спектр э.п.р. (рис. 1).

Таким образом, полученные данные свидетельствуют о том, что экзогенные липоперекиси способны приводить к интенсификации свободнорадикальных окислительных процессов в тканевых биолипидах печени, что развитие этих процессов, в свою очередь, сопровождается, во-видимому, усиленным окислепием полиненасыщенных жирных кислот тканевых липидов.

Харьковский научно-исследовательский институт гигиены труда и профзаболеваний

Поступило 8 XI 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. М. Эмануэль, В сборн. Успехи органических перекисных соединений и аутоокисления, М., 1969, стр. 319. ² Н. М. Эмануэль, Ю. Н. Лясковская, Торможение процессов окисления жиров, М., 1961. ³ В. Г. Партешко, Тез. докл. симпозиума: Свободнорадикальные состояния и их роль при лучевом поражении и злокачественном росте, Изд. АН СССР, 1971, стр. 68. ⁴ В. Г. Партешко, Усп. совр. биол., 68, 5, 192 (1969). ⁵ В. Г. Партешко, Научные доклады высш. школы, биол. науки, 7, 60 (1970). ⁶ R. Т. Но1 шап, Н. Науеs, Anal. Chem., 30, 1422 (1958). ⁷ J. Folch, М. Gus et al., J. Biol. Chem., 226, 1, 497 (1957). ⁸ В. Г. Партешко, А. А. Лесюис, Г. В. Белоус, Биофизика, 16, 1 (1971). ⁹ Ю. А. Владимиров, Т. Б. Суслова, В. И. Оленев, Биофизика, 14, 5, 836 (1962). ¹⁰ Б. Н. Тарусов, Ю. П. Козлов и др., ДАН, 163, № 3, 752 (1965). ¹¹ В. Д. Походенко, Феноксильные радикалы, Киев, 1969.