Доклады Академии наук СССР 1972. Том 205. № 5

ГЕОЛОГИЯ

Е. В. ПУЧКОВ, Г. С. БУКУРОВ

РУДНО-МАГМАТИЧЕСКИЕ СИСТЕМЫ КАЗАХСТАНА

(Представлено академиком В. И. Смирновым 28 IV 1971)

Конкретным интрузивным комплексам соответствует вполне определенный пабор месторождений, поэтому в учение об эндогенных рудных месторождениях целесообразно ввести понятие «рудно-магматическая система» (РМС). Под РМС понимается плутонический или вулкано-плутонический комплекс со всеми процессами его воздействия на вмещающие породы и всеми продуктами саморазвития.

Содержание понятия РМС можно показать на некоторых примерах связи оруденения с магматическими комплексами Казахстана. Так, красномайский комплекс (пироксениты, нефелиновые сиениты) сопровождается флогопитизацией, диопсидизацией и карбонатизацией с редкометальной минерализацией; чатыркульский (гранодиориты, граниты, аляскиты) — калишнатизацией, пропилитизацией с молибденово-медным и железорудным оруденением; калбинский и акчатауский (граниты, аляскиты) — пегматитами, грейзенами и редкометальной минерализацией; топарский и калдырминский — вторичными кварцитами, пропилитами с медиомолибденовой и реже полиметаллической минерализацией и т. д.

В рамках РМС основные термодинамические параметры меняются с глубной, поэтому в зависимости от денудационного среза РМС подразделяется на подсистемы. Последние различаются типами магматитов по глубинности, формационной принадлежности метасоматитов, морфологическим типам руд, их вещественному составу, элементам-примесям и т. д. Однако для подсистем одной и той же РМС общим является принадлежность магматитов к одному комплексу, близость метасоматических формаций, унаследованность вещественного состава руд, элементов-примесей и т. д. Характерным примером выделения в рамках РМС подсистем может служить Прибалхашье, где среди среднс-верхнекаменноугольной вулканоплутонической системы четко выделяется подсистема вулкано-плутонических мульд с золото-медно-молибденово-полиметаллической минерализацией, сопровождающейся широким развитием вторичных кварцитов; подсистема сочленения эффузивных и интрузивных серий с медно-молибденовой минерализацией с широким развитием вторичных кварцитов и пропилитов, а также плутоническая подсистема (железо-медно-молибденово-полиметаллическая) с широким развитием калишпатизации, биотитизации, эпидотизации, хлоритизации и скарнирования.

Месторождения, относимые к одной и той же рудной формации, но принадлежащие к различным подсистемам РМС, также приобретают специфические особенности. Это видно на примере медно-порфировой формации Центрального Казахстана (табл. 1).

Объединение в одну РМС магматитов, метасоматитов и оруденения, естественно, подразумевает их близкое по времени формирование. В этой связи первостепенное значение при отнесении к одной РМС магматитов, метасоматитов и оруденения приобретают радиологические методы. Конкретная связь с некоторыми интрузивными комплексами Казахстана определенных метасоматитов и типов рудных месторождений приведена в табл. 2.

РМС		Подсистема	Типы метасоматитов	Рудные парагенезисы	Элемен- ты-при- меси	Примеры месторож- дений
Средневерхнекаменноугольная	Вулкано-плутоническая	Слабоэро- дированных вулкано-тек- тонических мульд		нит — халькопирит; пирит — халькопирит;	As, Bi, Sb, Au, Ag	Сокур- кой, Бесшоко, Нурбай
		Сочлене- ние эф рузив- ных и интру- зивных се- рий	бит-карбонатной ступени,	нит — халькопирит;	As, Se, Te, Au, Ag, Re, Sn	
	Плутоническая		Пропилиты эпидот-хлорит-альбитовой ступени, калиппатизация, биотизация, актинолитизация, окварцевание	мит — шеелит — мона- цит; пирит — молиб-		Каратас,

Таблица 2

Интрузивные комплексы. [Массивы]	Абсолютный возраст интрузивных пород, млн лет *	Абсолютный возраст околорудных метасоматитов, млн лет *	Тип месторождения
Балхашский (С ₁) [Со- коловский, Адаевский, Красно-Октябрьский, Бенкалинский]	ритов и гранодио-	Альбит-биотитовые и биотит-сканолито- вые метасоматиты, 348 ± 5 (7)	соматический маг-
Топарский (С2) [Коунрадский, Алтуайтский]	диоритов, 335 ± 10	Дайки диоритовых порфиритов, секущие оруденение, 324 ± 10 (2)	вый (прожилково-
Калдырминский (С _з) [Батыстау, Байназар, Узунбулак, Нура-Талды, Северный Джуан-Конур] Восточный Коунрад	Биотит из гранитов, 318 ± 10 (6) Биотит из гранитов, 320 ± 10 (много)	зенов или кварц-мус- ковитовых жил,300±5 (8) Мусковит из грей-	но-грейзеновый редкометальный
Ақчатаусқий (Р ₁) [Ақча- таусқий]		Мусковит из грейзенов, 293 ± 10 (3)	Кварцевожиль- ный редкометаль- ный

^{*} В скобках — число определений.

Пространственная приуроченность оруденения к интрузивным комплексам в отдельных случаях сама по себе еще не является признаком РМС. Так, калдырминский интрузивный комплекс входит в РМС, специализированную на медно-молибденовое оруденение. Обнаружение в его пределах редкометального кварцевожильно-грейзенового оруденения, относящегося к нижнепермской РМС, может указывать лишь на то, что кал-

дырминские интрузивы в данном случае являются только вмещающими. Последнее подтверждается данными абсолютного возраста рудных метасоматитов, которые несмотря на их залегание в гранитоидах C₃ имеют возраст P₄ (см. табл. 2).

Авторы благодарны Т. П. Семеновой за предоставление и систематиза-

цию данных по абсолютному возрасту.

Казахский научно-исследовательский институт минерального сырья

Поступило 24 IV 1971

Центрально-Казахстанское геологическое управление Алма-Ата

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. А. Кузнецов, Главные типы магматических формаций, 1964. ² В. И. Смирнов, Геология полезных ископаемых, 1969. ³ Ф. К. Шипулин, Геол. рудн. месторожд., 13, № 1, 3 (1971). ⁴ К. В. Краускопф, В сборн. Геохимия гидротермальных рудных месторождений, М., 1970. ⁵ Л. Н. Овчиников, Тр. VII сессии комиссии по опред. абсолютн. возраста геол. формаций, 1960, стр. 143. ⁶ Г. П. Багдасарян, Р. Х. Гукасян и др., Абсолютное датирование тектономагматических циклов и этапов оруденения, 1966, стр. 27. ⁷ F. W. Dawell, J. L. Kulp, Econ. Geol., 62, 7 (1967).