УДК 669.15:538.115

ТЕХНИЧЕСКАЯ ФИЗИКА

л. и. лысак, с. п. кондратьев, ю. н. макогон, б. и. николин

АНОМАЛЬНОЕ ИЗМЕНЕНИЕ МОДУЛЯ СДВИГА Fe — Mn СПЛАВОВ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

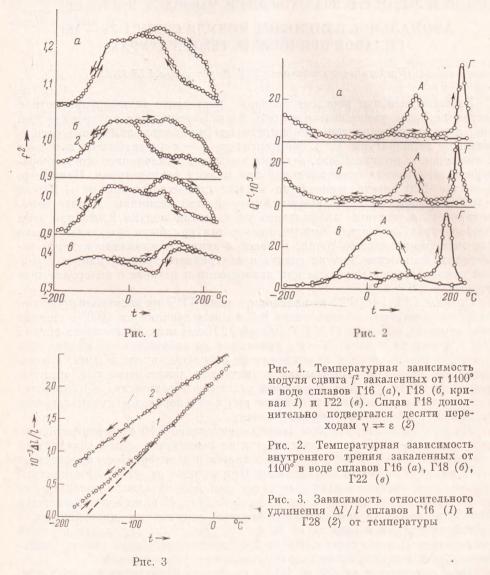
(Представлено академиком Г. В. Курдюмовым 4 IX 1972)

Известно, что при переходе из парамагнитного в антиферромагнитное состояние резко уменьшается модуль Юнга, повышается внутреннее трение, изменяется характер зависимости коэффициента линейного расширения от температуры ($^{1-6}$). Мартенситное $\gamma \to \varepsilon$ -превращение приводит к повышению модуля Юнга, а также вызывает отклонение его температурной зависимости от нормальной при низких температурах. Например, в сплаве $\Gamma 20$ вместо повышения модуля при охлаждении от -100 до -196° С авторы (1 , 2) наблюдали снижение этой величины. Однако закономерность и причины аномального уменьшения модуля Юнга при этих температурах оставались неизученными, так как были получены только две экспериментальные точки. В связи с этим представляло интерес исследовать изменение модуля сдвига и внутреннего трения сплавов с разной концентрацией марганца при охлаждении и нагреве в интервале температур $-196 \div 250^{\circ}$.

Сплавы Г16, Г18, Г22 выплавляли в печи ТВЧ из электролитического марганца и карбонильного железа В-3 и после закалки от 1100° в воде из них вырезали образцы $(1 \times 1 \times 100 \text{ мм}^3)$. Измерение внутреннего трения (Q^{-1}) и модуля сдвига $(G \sim f^2)$ проводили на «обращенном» крутильном маятнике при нагреве и охлаждении со скоростью около 8° /мин, а относительное удлинение определяли на катковом дилатометре при увеличении около 6000 (†). Для получения различного количества ε -мартенсита в одном и том же образце проводили ряд $\gamma = \varepsilon$ -переходов путем нагревов

до 400° и охлаждений в жидком азоте.

На рис. 1a видно, что при охлаждении сплава $\Gamma 16$ от комнатной температуры до -50° модуль сдвига почти не изменяется, а при дальнейшем охлаждении до -170° он резко уменьшается и в интервале температур от -170 до -196° остается неизменным. При нагреве от -196° до комнатной температуры экспериментальные точки для модуля сдвига попадают на ту же кривую, что и при охлаждении (рис. 1a). В интервале температур $20-80^\circ$ величина G повышается благодаря магнитному превращению в аустените $\binom{1}{2}$, а в области от 80 до 200° уменьшается, следуя обычной температурной зависимости. Выше 200° происходит более резкое уменьшение модуля сдвига вследствие обратного $\varepsilon \to \gamma$ -превращения.


При охлаждении от 250 до 140° в сплаве не происходит фазовых превращений и модуль сдвига изменяется соответственно его температурной зависимости. В области температур 140—20° наблюдается отклонение от этой зависимости вследствие влияния двух факторов: увеличения модуля сдвига за счет γ → ε-превращения и снижения его благодаря магнитному

упорядочению в аустените.

Для выяснения природы аномального изменения модуля сдвига сплава Γ 16 от -50 до -170° было измерено внутреннее трение (рис. 2a) и относительное удлинение (рис. 3). Оказалось, что кроме пиков A и Γ , соответствующих $\gamma \to \varepsilon$ - и $\varepsilon \to \gamma$ -превращениям, в области температур аномального уменьшения модуля сдвига наблюдается повышение внутреннего

трения (рис. 2a), величина которого оставалась неизменной в течение длительной выдержки (более 60 мин.). Такое изменение внутреннего трения характерно для магнитного превращения (⁸). Аналогичная картина изменения внутреннего трения наблюдается в сплавах Г18 и Г22 (рис. 26, в).

На дилатометрической кривой сплава Г16 при охлаждении и нагреве в области температур аномального изменения модуля сдвига обнаружен

перегиб (рис. 3, 1), который обычно наблюдается при антиферромагнитном превращении (2). Подобного перегиба нет в сплаве $\Gamma 28$, в котором не образуется ε -мартенсит (рис. 3, 2).

Все эти данные можно объяснить магнитным превращением в є-мартенсите, которое было установлено при изучении таких же сплавов методом Мёссбауэра (11). Эти авторы показали, что в є-фазе, так же как и в аустените марганцевых сплавов, при температурах ниже —300 происходит переход из парамагнитного в антиферромагнитное состояние.

При повышении концентрации марганца эффект аномального изменения модуля сдвига проявляется в меньшей степени (рис. 1). Это может

быть связано либо с уменьшением количества ϵ -мартенсита, либо с влиянием марганца. Для выяснения этого вопроса сплав Γ 18 подвергали десяти $\gamma = \epsilon$ -переходам, при которых, как известно, возрастает количество ϵ -фазы и соответственно уменьшается количество остаточного аустенита (°). Найдено, что в области температур $50-100^\circ$ эффект аномального изменения модуля сдвига γ -фазы уменьшается, в то время как при низких температурах его изменение остается прежним (ср. кривые 1 и 2 на рис. 1). Следовательно, можно заключить, что марганец оказывает более существенное влияние на величину эффекта изменения модуля сдвига ϵ -мартенсита при низких температурах, чем количество этой фазы (рис. 1). Аналогичное влияние марганца на величину изменения модуля наблюдали при магнитном превращении в аустените (1, 2, 10). Кроме того, с повышением содержания марганца область аномального изменения модуля сдвига ϵ -мартенсита смещается к более низким температурам (рис. 1), в то время как γ -фазы — к более высоким (2).

Таким образом, в сплавах Fe — Mn, содержащих є-мартенсит п остаточный аустенит, в области низких температур найдено аномальное изменение модуля сдвига, повышение внутреннего трения, изменение коэффициента термического расширения. Эти эффекты объяснены переходом из парамагнитного в антиферромагнитное состояние г.п.у.-решетки є-мартенсита. В одном и том же сплаве температура указанных эффектов в

г.ц.к.-решетке выше, чем в г.п.у.

Институт металлофизики Академии наук УССР Киев Поступило 31 VIII 1972

цитированная литература

¹ И. Н. Богачев, В. Ф. Еголаев, Б. А. Потехин, ДАН, 173, № 6, 1295 (1967). ² И. Н. Богачев, В. Ф. Еголаев, Т. Л. Фролова, ФММ, 29, 358 (1970). ³ А. И. Мелькер, О. Г. Соколов, ДАН, 159, 74 (1964). ⁴ А. И. Мелькер, С. И. Сахин, О. Г. Соколов, Металловедение, № 8, 116 (1964). ⁵ А. И. Мелькер, С. И. Сахин, О. Г. Соколов, Металловедение, № 7, 86 (1963). ⁶ Г. Г. Лукина, А. И. Мелькер, Металловедение, № 11, 3 (1967). ⁷ А. К. Шурин, Вопр. физ. мет. и металловед., № 18, 222 (1964). ⁸ В. С. Постников, Внутреннее трение в металлах, М., 1968. ⁹ Л. И. Лысак, Б. И. Николин, ФММ, 23, 93 (1967). ¹⁰ Н. U mebayashi, Y. Ishikawa, J. Phys. Soc. Japan, 21, 1281 (1966). ¹¹ Н. О h- no, M. Mekata, J. Phys. Soc. Japan, 31, 102 (1971)