УДК 517.949.2

MATEMATUKA

Р. Г. КОПЛАТАНЗЕ

О СУЩЕСТВОВАНИИ КОЛЕБЛЮЩИХСЯ РЕШЕНИЙ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ

(Представлено академиком И. Н. Векуа 21 VII 1972)

В настоящей заметке приводятся некоторые предложения о существовании колеблющихся решений дифференциального уравнения

$$u''(t) = f(t, u(\tau_1(t)), \dots, u(\tau_n(t)), u'(\tau_1(t), \dots, u'(\tau_n(t))).$$
 (1)

Эти предложения являются специфическими для дифференциальных уравнений с запаздывающим аргументом, ибо при $\tau_i(t) \equiv t, \ i=1,\ldots,n$, они теряют смысл.

Всюду в дальнейшем предполагается, что функция $f(t, x_1, \ldots, x_n, y_1, \ldots, y_n)$ определена в области $0 \le t < +\infty, -\infty < x_i, y_i < +\infty, i = 1, \ldots, n$, удовлетворяет локальным условиям Каратеодори и

$$f(t, x_1, \ldots, x_n, y_1, \ldots, y_n) x_1 > 0$$
 при $x_1 \neq 0$ *,

а функции $\tau_i(t), i=1,\ldots,n$, непрерывны в промежутке $[0,+\infty), \tau_i(t) < t$ при $t \in [0,+\infty), \tau_i(t) \leqslant \tau_1(t)$ и $\lim_{t \to +\infty} \tau_i(t) = +\infty, i=1,\ldots,n$.

Функцию u(t) назовем правильным решением уравнения (1), если она является решением этого уравнения на некотором промежутке $[t_0, +\infty)$ и $u(t) \neq 0$ при $t \in [a, +\infty)$ для любого $a \in [t_0, +\infty)$.

Правильное решение уравнения (1) назовем колеблющимся, если оно имеет последовательность нулей, сходящуюся $\kappa + \infty$, а в противном случае — неколеблющимся.

Введем следующее

Определение. Будем говорить, что уравнение (1) обладает свойством А, если каждое правильное решение этого уравнения является либо колеблющимся, либо монотонным и неограниченным. При этом существуют решения обоих типов.

Теорема 1. Пусть найдется такая функция $\varphi(t, x_1, \ldots, x_n)$, определенная в области $0 \le t < +\infty, -\infty < x_1, x_2, \ldots, x_n < +\infty$ и удовлетворяющая локальным условиям Каратеодори, что

$$0 \leqslant \varphi(t, x_1, \dots, x_n) \leqslant \varphi(t, z_1, \dots, z_n)$$
 при $t \geqslant 0$, $x_i z_i \geqslant 0$, (2)
 $x_1 x_i \geqslant 0$, $|x_i| < |z_i|$, $i = 1, \dots, n$.

Писть, кроме того, на множестве

$$D = \{(t, x_1, \ldots, x_n, y_1, \ldots, y_n) \colon 0 \leqslant t < +\infty, \ x_i x_1 \geqslant 0, \ |x_i| \geqslant |x_1|,$$

$$x_i y_i \leq 0, \quad i = 1, \ldots, n$$

соблюдается неравенство

$$f(t, x_1, \ldots, x_n, y_1, \ldots, y_n) \operatorname{sign} x_1 \geqslant \varphi(t, x_1, \ldots, x_n)$$
(3)

^{*} В случае, когда $f(t, x_1, \ldots, x_n, y_1, \ldots, y_n)$ $x_1 \le 0$, вопрос о колеблемости решений уравнения (1) рассматривается в $(^{1-4})$.

u при любом $t_0 \in [0, +\infty)$

$$\sup \{ \rho_j(t_0, t^*) \colon t^* > t_0 \} = +\infty, \quad j = 0, 1,$$

 $z\partial e \ \wp_i(t,\,t^*) - верхнее решение задачи$

$$\frac{d\rho}{dt} = -\varphi(t, (-1)^j(t-\tau_1(t))\rho, \ldots, (-1)^j(t-\tau_n(t))\rho), \quad \rho(t^*) = 0.$$

Тогда уравнение (1) обладает свойством А.

Следствие. Пусть в области D соблюдается неравенство

$$f(t, x_1, \dots, x_n, y_1, \dots, y_n) \operatorname{sign} x_1 \geqslant g(y_1, \dots, y_n) \sum_{i=1}^n a_i(t) \prod_{j=1}^{m_i} |x_j|^{\lambda_{ij}},$$
 (4)

где
$$\lambda_{ij}\geqslant 0,\;\;j=1,\ldots,m_i,\;\;m_i\in\{1,\ldots,n\}, \sum_{j=1}^{m_i}\lambda_{ij}<1,\;\;i=1,\ldots,n,\;\;$$
функ-

иия $g(y_1, ..., y_n)$ непрерывна и положительна в области $-\infty < y_i < +\infty$, i = 1, ..., n, а функции $a_i(t)$, i = 1, ..., n, неотрицательны и суммируемы на каждом конечном отрезке промежутка $[0, +\infty)$.

Тогда условие

$$\sum_{i=1}^{n}\int_{0}^{+\infty}a_{i}\left(t\right)\prod_{j=1}^{m_{i}}\left(t-\tau_{j}\left(t\right)\right)^{\lambda_{ij}}dt=+\infty$$

достаточно для того, чтобы уравнение (1) обладало свойством А.

Теорема 2. Пусть функция $\tau_1(t)$ абсолютно непрерывна, $0 \le \varepsilon_1'(t) \le 1$ при $0 \le t < +\infty$ и найдется такая функция $\varphi(t, x_1, \ldots, x_n)$, удовлетворяющая локальным условиям Каратеодори и условию (2), что на множестве D соблюдается неравенство (3) и при любом $t_0 \in [0, +\infty)$ имеем

$$\sup \{\rho_j(t_0; t^*): t^* > t_0\} = +\infty, \quad j = 0, 1,$$

 $z\partial e \
ho_i(t;t^*)$ — верхнее решение задачи

$$\frac{d\rho}{dt} = -(t - \tau_1(t))^{\alpha} \varphi(t, (t - \tau_1(t))^{1-\alpha} \rho, \dots, (t - \tau_1(t))^{1-\alpha} \rho), \quad \rho(t^*) = 0,$$

$$a \ \alpha \in [0, 1].$$

. — 10, 11. Тогда уравнение (1) обладает свойством А.

Следствие. Пусть функция $\tau_i(t)$ абсолютно непрерывна, $0 \le \tau_i'(t) \le 1$ при $0 \le t < +\infty$ и на множестве D соблюдается неравенство

(4),
$$c\partial e \ \lambda_{ij} \ge 0$$
, $j = 1, \ldots m_i, \ m_i = \{1, \ldots, n\}, \ \lambda_i = \sum_{j=1}^{m_i} \lambda_{ij} < 1, \quad i = 1, \ldots, n.$

Пусть далее найдется такое число $\alpha \in [0, 1]$, что

$$\sum_{i=1}^{n}\int_{0}^{+\infty}a_{i}(t)\left(t-\tau_{1}(t)\right)^{\lambda_{i}(1-\alpha)+\alpha}dt=+\infty.$$

Тогда уравнение (1) обладает свойством А.

Теорема 3. Пусть функция $\tau_1(t)$ абсолютно непрерывна, $0 \le \tau_1'(t) \le 1$ при $0 \le t < +\infty$, $\overline{\lim_{t \to +\infty}} \frac{\tau_1(t)}{t} < 1$ и в области $0 \le t < +\infty$, $-\infty < x_i, y_i < +\infty, i = 1, \ldots, n$, соблюдается неравенство

$$g_1(y_1, \ldots, y_n) \sum_{i=1}^n a_i(t) \prod_{j=1}^{m_i} |x_j|^{\lambda_i^j} \leqslant f(t, x_1, \ldots, x_n, y_1, \ldots, y_n) \operatorname{sign} x_1 \leqslant x_1$$

$$\leqslant g_2(y_1,\ldots,y_n)\sum_{i=1}^n a_i(t)\prod_{j=1}^{m_i}|x_j|^{\lambda_{ij}},$$

где $\lambda_{ij} \ge 0, \ j=1,\ldots,m_i, \ m_i \in \{1,\ldots,n\}, \sum_{j=1}^{m_i} \lambda_{ij} < 1, \ i=1,\ldots,n,$ функции

 $g_{h}(y_{1},\ldots,y_{n}),\ k=1,2,\$ непрерывны u положительны e области $-\infty < < y_{i} < +\infty,\ i=1,\ldots,n,$ а функции $a_{i}(t),\ i=1,\ldots,n,$ неотрицательны u суммируемы на каждом конечном отрезке промежутка $[0,+\infty).$

Тогда условие

$$\int_{0}^{+\infty} t \sum_{i=1}^{n} a_{i}(t) dt = + \infty$$

необходимо и достаточно для того, чтобы уравнение (1) обладало свойством ${
m A.}$

Теорема 4. Пусть в области $0 \le t < +\infty, -\infty < x_i, y_i < +\infty, i = 1, ..., n, соблюдается неравенство$

$$0 \leqslant f(t, x_1, \ldots, x_n, y_1, \ldots, y_n) \operatorname{sign} x_1 \leqslant \sum_{i=1}^n a_i(t) \prod_{j=1}^{m_i} |x_j|^{\lambda_j},$$

где $\lambda_{ij} \geqslant 0, \, j=1,\ldots,m_i, \, m_i \in \{1,\ldots,n\}, \, \sum_{j=1}^{m_i} \lambda_{ij} \! < \! 1, \quad i=1,\ldots,n, \, \, \, a \text{ функ-}$

ции $a_i(t)$, $i=1,\ldots,n$, неотрицательны и суммируемы на каждом конечном отрезке промежутка $[0,+\infty)$.

Если, кроме того, соблюдается условие

$$\overline{\lim}_{t\to+\infty} (\gamma^*(t)-t) \int_{t}^{\gamma^*(t)} \sum_{i=1}^{n} a_i(s) ds < +\infty,$$

где

$$\gamma^*(t) = \sup \{s: \tau_1(s) < t\},\,$$

то уравнение (1) имеет правильное ограниченное решение. При этом любое колеблющееся решение является ограниченным.

Следствие. Пусть функция a(t) положительна и суммируема на каждом конечном отрезке промежутка $[0, +\infty)$,

$$\int_{0}^{+\infty} a(t) dt = + \infty \quad u \quad \overline{\lim} \int_{t \to +\infty}^{t+\Delta} a(s) ds < + \infty.$$

Тогда уравнение

$$u''(t) = a(t) |u(t - \Delta)|^{\lambda} \operatorname{sign} u(t - \Delta),$$

 $e\partial e \ 0 < \lambda < 1 \ u \ \Delta = \mathrm{const} > 0$, обладает свойством $A \ u$ все его колеблющиеся решения являются ограниченными.

Научно-исследовательский институт прикладной математики Тбилисского государственного университета Поступило 11 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. М. Одарич, В. М. Шевело, Доп. АН УРСР, А, № 11, 1027 (1967). ² О. М. Одарич, Доп. АН УРСР, А, № 8, 712 (1968). ³ Н. Е. Gollwitzer, J. Math. Anal. Appl., 26, № 2, 385 (1969). ⁴ Р. Г. Коплатадзе, Сообщ. АН ГрузССР, 60, № 2, 269 (1970).