УДК 539.2 *ФИЗИКА*

С. В. СЕМЕНОВСКАЯ

ИСПОЛЬЗОВАНИЕ МЕТОДА ДИФФУЗНОГО РАССЕЯНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ ДЛЯ ПОСТРОЕНИЯ ДИАГРАММЫ РАВНОВЕСИЯ

(Представлено академиком Г. В. Курдюмовым 1 IX 1972)

В работе (¹) было показано, что интенсивность диффузного рассеяния рентгеновских лучей на равновесном ближнем порядке в монокристаллах неупорядоченных сплавов определяет Фурье-компоненты энергии сметения (Ф.к.э.с.), отвечающие той точке обратного пространства, в которой производилось измерение интенсивности. Такое экспериментальное определение Ф.к.э.с. было проведено в (²) для сплавов $Fe-Alc 9, 12, 16, 19 \text{ и } 22 \text{ ат.} \% Al. B (²) были найдены Ф.к.э.с. <math>V(\mathbf{k}_1), V(\mathbf{k}_2)$ и V(0) для сверхструктурных $(\mathbf{k}_1 = 2\pi(\mathbf{a}_1^* + \mathbf{a}_2^* + \mathbf{a}_3^*))$ и $\mathbf{k}_2 = \pi(\mathbf{a}_1^* + \mathbf{a}_2^* + \mathbf{a}_3^*))$ и структурного $(\mathbf{k} = 0)$ волновых векторов.

Из теории (³) следует, что в приближении самосогласованного поля именно эти три энергетические константы определяют свободную энергию твердых растворов, упорядочивающихся по типу Fe₃Al. С учетом ферромаг-

нетизма в сплавах Fe-Al эта свободная энергия F имеет вид

$$\frac{F}{N\varkappa T} = \overline{F} = \frac{c^2}{2} \frac{V(0)}{\varkappa T} + \frac{x^2}{2} \frac{V(k_1)}{\varkappa T} + \frac{y^2}{4} \frac{V(k_2)}{\varkappa T} + \frac{1}{2} \left[(c+x) \ln(c+x) + (1-c-x) \ln(1-c-x) \right] + \frac{1}{4} \left[(c-x-y) \ln(c-x-y) + (1-c+x+y) \ln(1-c+x+y) \right] + \frac{1}{4} \left[(c-x+y) \ln(c-x+y) + (1-c+x-y) \ln(1-c+x-y) \right] + \frac{c}{2} \left[(1+\sigma) \ln(1+\sigma) + (1-\sigma) \ln(1-\sigma) \right], \tag{1}$$

$$V(\mathbf{k}) = V_{\text{XHM}}(\mathbf{k}) + J(\mathbf{k}) \sigma^2 s^2, \tag{2}$$

 $V_{\text{хим}}(\mathbf{k}) - \Phi$.к.э.с. в отсутствие магнетизма, $J(\mathbf{k}) - \Phi$ урье-компонента обменной энергии между атомами Fe, σ — относительная намагниченность, s — спин, приходящийся на один атом Fe; c — атомная доля Fe, \varkappa — постоянная Больцмана, T — абсолютная температура, N — полное число атомов; x, y — параметры дальнего порядка, определяющие распределение атомов Fe по узлам R решетки:

$$n(\mathbf{R}) = c + xe^{i\mathbf{k}_1\mathbf{R}} + y\sin\mathbf{k}_2\mathbf{R} \tag{3}$$

 $(\phi$ ункция $n(\mathbf{R})$ на узлах решетки принимает три значения: (c+x), (c-x-y) и (c-x+y)).

В приближении ближайших соседей для обменного взаимодействия (4)

$$J(\mathbf{k}_2) = 0, \qquad J(0) = -J(\mathbf{k}_1).$$
 (4)

Используя (2) и (4), а также условия равенства нулю первых производных от свободной энергии $\partial \overline{F}/\partial x,\,\partial \overline{F}/\partial y$ и $\partial \overline{F}/\partial \sigma,$ получим систему из

трех трансцендентных уравнений для определения равновесных значений параметров дальнего порядка $ar{x}$ и $ar{y}$ и относительной намагниченности $ar{ extsf{o}}$ при любой температуре и составе сплава:

$$\ln \frac{(1-c+x-y)(c-x-y)}{(1-c+x+y)(c-x+y)} = \frac{2y}{\kappa T} V(\mathbf{k}_2),$$
 (5)

$$\ln \frac{(1-c+x-y)(c-x-y)}{(1-c+x+y)(c-x+y)} = \frac{2y}{\kappa T} V(\mathbf{k}_2),$$

$$\ln \frac{(1-c-x)^2 (c-x-y) (c-x+y)}{(c+x)^2 (1-c+x+y) (1-c+x-y)} = \frac{4x}{\kappa T} (V_{\text{XMM}}(\mathbf{k}_1) + J(0) \sigma^2 s^2),$$
(6)

$$\ln \frac{1+\sigma}{1-\sigma} = 2\sigma \frac{T_C(x,y)}{T}, \tag{7}$$

где $T_c(x, y)$ — температура Кюри, равная

$$T_c(x, y) = J(0) s^2 c (1 - x^2 / c^2).$$
 (8)

Систему уравнений (5) — (7) удается свести к одному трансцендентному уравнению (5), в котором величина у определяется соотношением

$$y = \left(\frac{(c+x)^2 (1-c+x)^2 \exp\left[\frac{4x}{\kappa T} (V_{\text{XMM}}(\mathbf{k_1}) + J(0) \sigma^2 s^2)\right] - (c-x)^2 (1-c-x)^2}{(c+x)^2 \exp\left[\frac{4x}{\kappa T} (V_{\text{XMM}}(\mathbf{k_1}) + J(0) \sigma^2 s^2)\right] - (1-c-x)^2}\right)^{1/2}, \quad (9)$$

а величина о равна

$$\sigma = \sqrt{1 - \tau} (1 + 0.73\tau), \quad \tau = T / T_c(x, y). \tag{10}$$

Уравнение (10) с высокой степенью точности аппроксимирует решение трансцендентного уравнения (7) (см. рис. 1). Для построения диаграммы

равновесия Fe — Al необходимо выразить свободную энергию (1) через Tи с. Для этого равновесные значения $\bar{x}, \ \bar{y}, \ \bar{\sigma}$ следует выразить через T и c с помощью уравнений (5), (9) и (10) и подставить \bar{x} , \bar{y} , $\bar{\sigma}$ в (1). Из выражений (1), (5), (9), (10) следует, что при наличии магнетизма свободная энергия F опренензделяется ПЯТЬЮ вестными параметрами: $V_{\text{xum}}(0)$, $V_{\text{xum}}(\mathbf{k}_1)$, $V_{\text{XMM}}(\mathbf{k}_2) = V(\mathbf{k}_2), J(0) \text{ in } s.$

Для определения величины з использовались экспериментальные ные (5-7) по концентрационной зависимости числа спинов зузел, приходящихся на 1 узел решетки. Эти данные для величины $s_{\text{vзел}}/c = s$ (число спинов на 1 атом Fe) приведены

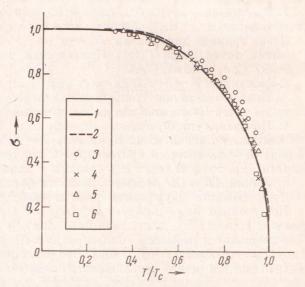


Рис. 1. Температурная зависимость относительной намагниченности σ , рассчитанная по формулам (7) (1) и (10) (2). 3-6 — экспериментальные данные для Fe — Al сплавов с 5 (3), 10 (4), 15 (5) и 20 ат.% Al (6) (данные 3. Н. Булычевой)

на рис. 2. Видно, что величина в практически не изменяется вплоть до ~25 ат. % Al. Поэтому в соответствии с (5-7) концентрационная зависимость *s* выбрана в виде

выбрана в виде
$$s = \begin{cases} 1.11 \text{ (число спинов для чистого Fe) для } 1 \geqslant c > 0.7, \\ 0 & \text{для } c \leqslant 0.7. \end{cases}$$
 (11)

Используя (11) и экспериментальные значения температуры Кюри (8), с помощью формулы (8) определили Фурье-компоненту обменной энергии J(0). Этот расчет для неупорядоченных сплавов (x=0) и приближенно для сплавов с дальним порядком ($x \neq 0$) дает

$$J(0) = 915^{\circ} \varkappa \pm 25^{\circ} \varkappa$$
 для $0.90 \ge c \ge 0.71$. (12)

Эти значения J(0) и s, а также $V(\mathbf{k}_1)$, $V(\mathbf{k}_2)$ и V(0), измеренные ранее в $\binom{2}{2}$ методом диффузного рассеяния рентгеновских лучей, использовались для нахождения $V_{\text{хим}}(\mathbf{k}_1)$, $V_{\text{хим}}(0)$ и $V_{\text{хим}}(\mathbf{k}_2) = V(\mathbf{k}_2)$ по (2) и (4) *.

$$V_{\text{xhm}}(\mathbf{k}_{i}) = -5000^{\circ} \kappa \pm 200^{\circ} \kappa,$$
 (13)

$$V_{\text{xem}}(\mathbf{k}_2) = V(\mathbf{k}_2) = -3700^{\circ} \kappa \pm 200^{\circ} \kappa, \quad V_{\text{xem}}(0) = 5800^{\circ} \kappa \pm 200^{\circ} \kappa.$$

Используя численные значения (11) — (13) величин s, J(0), $V_{\text{хим}}(\mathbf{k}_1)$, $V_{\text{хим}}(\mathbf{k}_2)$ и $V_{\text{хим}}(0)$ с помощью ЭВМ Минск-32 был проведен расчет равновесных значений параметров дальнего порядка $\overline{x}(T,c)$, $\overline{y}(T,c)$, относительной намагниченности $\overline{\sigma}(T,c)$, температуры Кюри $T_c(c)$ и свободной энергии F(T,c).

Полученные значения свободной энергии позволили теоретически рассчитать диаграмму состояния Fe - Al в области $1 \ge c \ge 0,5$. Она приведена на рис. 3, на котором для сравнения показана также последняя и, повидимому, наиболее надежная диаграмма состояния Fe - Al, полученная в (9) методом электронной микроскопии (на закаленных образцах).

Из рис. З видно, что рассчитанная нами диаграмма Fe — Al хорошо согласуется с известными экспериментальными данными: содержит небольшую двухфазную область ($\alpha_m + \alpha_2$), а также двухфазные области ($\alpha_m + \alpha_{1m}$) и ($\alpha_m + \alpha_{1n}$). Однако получены и новые результаты.

1. Расслоение внутри однофазной области а на магнитную и немаг-

нитную фазы $(\alpha_{1m} + \alpha_{1n})$, обусловленное магнетизмом.

Левая граница двухфазной области $(\alpha_{im} + \alpha_{in})$ практически совпадает с линией точек Кюри $T_c(c)$. Критическая точка K имеет координаты $T_K = 397$ ° C; $c_K = 30$ ат. % Al.

2. Распад при $T = 315^{\circ}$ С на смесь фаз $(\alpha_{1m} + \alpha_2)$.

3. Положение точки A определяется пересечением линии точек Кюри

с линией точек Курнакова для фазового перехода II рода α ≠ а₂.

4. Показано, что двухфазные области $(\alpha_m + \alpha_{1n})$ и $(\alpha_2 + \alpha_{1n})$ генетически связаны с линией точек Курнакова $T = T_v(c)$ для фазового перехода II рода $\alpha_2 = \alpha_1$, который протекал бы в отсутствие распада; двухфазные области $(\alpha_{1m} + \alpha_2)$ и $(\alpha_m + \alpha_2)$ связаны с линией точек Кюри.

5. Линии AB и CD являются линиями фазовых переходов II рода.

Существование двухфазной области ($\alpha_{1m}+\alpha_2$) отмечается в (8 , $^{10-12}$). Построенная нами диаграмма дает несколько завышенное по сравнению с (14) (на 11,5% для сплава Fe-29 ат.% Al) значение температуры T_y и смещение к меньшим концентрациям Al фазовой границы между α_m и двухфазной областью ($\alpha_m+\alpha_{1m}$). Эти отклонения, по-видимому, обусловлены принятым нами приближением самосогласованного поля, так как учет корреляционных поправок, например, по теории (13) понижает величину T_y .

Учет магнитной свободной энергии в выражении (1) следует рассматривать как полуэмпирический (он строго справедлив в приближении самосогласованного поля для $s={}^{1}/{}_{2}$ (${}^{15}, {}^{16}$)). Однако хорошее согласие вычисленных и экспериментальных значений σ (рис. 1) оправдывает его применение (наблюдаемое согласие даже лучше, чем в теории самосогла-

сованного поля при s = 1 (для сплавов Fe — Al $s \simeq 1,1$).

^{*} В (²) приведено другое значение для $V_{\text{хим}}(\mathbf{k_i})$, равное —5700° \varkappa , так как величина J(0) $\sigma^2 s^2$ определялась в (²) и (4) по-другому.

Рис. 2. Концентрационная зависимость числа спинов s на 1 атом Fe в Fe — Al-сплавах по данным (5) и (6) (1 , 2), полученным магнитным методом, и по данным (7) (3) методом поляризованных нейтронов. 4 — зависимость (1 1)

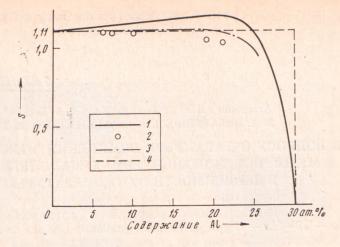
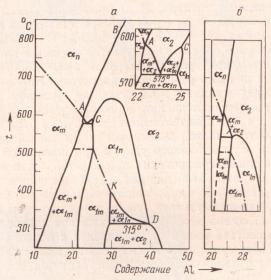


Рис. 3. a — диаграмма состояния Fe - Al, теоретически рассчитанная с помощью Ф.к.э.с., измеренных в (2) методом диффузного рассеяния рентгеновских лучей; 6 — экспериментальная диаграмма Fe — Al (9). α_n , α_m — неупорядоченный твердый раствор, немагнитный и магнитный соответственно; аіп и аіт - твердый раствор, упорядоченный по типу Fe₃Al(DO₃), немагнитный и магнитный; α₂ — твердый раствор, упо-рядоченный по типу FeAl рядоченный по типу (В2), немагнитный. Содержание Al в ат. %



Настоящая работа показывает, что использование метода диффузного рассеяния рентгеновских лучей монокристаллами неупорядоченных сплавов для определения Φ .к.э.с. $V(\mathbf{k})$ в точках обратного пространства, отвечающих положениям рефлексов упорядоченной фазы, представляет собой новый и весьма эффективный метод определения термодинамических характеристик сплавов.

Московский институт стали и сплавов Поступиле 31 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Кривоглаз, ЖЭТФ, 32, 1368 (1957). ² С. В. Семеновская, Ж. Б. Синявская, А. П. Сеничкин, Кристаллография, 18, № 3 (1973). ³ А. Г. Хачатурян, ФТТ, 5, 26 (1963). ⁴ М. М. Наумова, С. В. Семеновская, ФТТ, 13, № 2, 381 (1971). ⁵ А. Arrott, H. Sato, Phys. Rev., 114, Ser. II, № 6, 1420 (1959). ⁶ D. Parsons, W. Sucksmith, J. E. Thompson, Phil. Mag., 3, 1174 (1958). ⁸ B. Antonini et al., J. Phys., 25, 604 (1964). ⁸ L. Rimlinger, C. R., 261, 4090 (1965). ⁹ P. S. Swann, W. R. Duff, R. M. Fisher, Metallurgical Trans., 3, 409 (1972). ¹⁰ H. Warlimont, Zs. Metallkunde, 60, № 3, 195 (1969). ¹¹ E. H. Власова, Физ. мет. и металловед., 26, № 3, 500 (1968). ¹² R. Hergt et al., Phys. Stat. Sol., 41, 255 (1970). ¹³ Д. А. Бадалян, А. Г. Хачатурян, ФТТ, 12, 2, 439 (1970). ¹⁴ L. Guttman, H. C. Schnyders, G. J. Агаі, Phys. Rev. Letters, 22, № 11, 517 (1969). ¹⁵ В. М. Даниленко, А. А. Смирнов, Физ. мет. и металловед., 14, 337 (1962). ¹⁶ В. М. Даниленко, Д. Р. Риздвянецкий, А. А. Смирнов, там же, 15, 194 (1963); 16, 3 (1963).