УДК 517.946/51

MATEMATUKA

C. A. TEPCEHOB

О СИНГУЛЯРНОЙ ЗАДАЧЕ КОШИ ДЛЯ ОДНОЙ СИСТЕМЫ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО ТИПА

(Представлено академиком М. А. Лаврентьевым 7 II 1972)

Как известно, задача Коши для гиперболических уравнений с данными на линии вырождения не является корректной. В работе (¹) для уравнений второго порядка с нехарактеристическим вырождением было указано достаточное условие для корректности задачи Коши; это условие было несколько ослаблено в работе (³). В дальнейшем более общие условия были предложены в работах (6-14). Ряд работ (5-9) посвящен также задаче Коши для уравнений с характеристическим вырождением.

В настоящей работе исследуется одна корректная постановка задачи Коши, которая является обобщением и продолжением исследований в $\binom{6-9}{1}$.

Рассмотрим симметрическую гиперболическую систему уравнений

$$Au_y + Bu_x + Cu = F \tag{1}$$

при $y\geqslant 0$, которая вырождается на прямой y=0. A,B,C— квадратные матрицы порядка n и вектор F— заданные в верхней полуплоскости $y\geqslant 0$ функции.

1. Предположим, что B, C, F имеют при $y\geqslant 0$ непрерывные производные по y, а по x непрерывные производные до 2p+2 порядка (число p определяется ниже). Пусть $\det B(x,y)\neq 0$ для $y\geqslant 0$, A — диагональная матрица с элементами $a_k=y$, $k=1,2,\ldots,r$, $a_k=y^{\alpha_k}$, $k=r+1,\ldots,n$, $0\leqslant \alpha_k < 1$. Через A_2 обозначим диагональную матрицу с элементами $a_k=y^{\alpha_k}$. Представим B и C в виде

$$B = \begin{pmatrix} B_1 & B_3 \\ B_2^* & B_2 \end{pmatrix}, \quad C = \begin{pmatrix} C_1 & C_3 \\ C_4 & C_2 \end{pmatrix},$$

где B_1 , C_1 — матрицы порядка $r \times r$, а B_2 , C_2 — порядка $(n-r) \times (n-r)$. Будем считать, что любая характеристика системы (1), выходящая из какой-либо точки (x_0, y_0) , $y_0 > 0$, доходит до линии y = 0. Из этого условия и того, что $\det B(x, y) \neq 0$, легко видеть, что $r \leqslant \lfloor n/2 \rfloor$ — целой части n/2 и $B_1(x, 0) = 0$.

Предположим, что $C_1(x, O)$ — симметрическая матрица, $\gamma_1(x)$, ..., $\gamma_r(x)$ — ее собственные значения, а q(x) — матрица, осуществляющая подобие матрицы $C_1(x, 0)$ диагональной матрице с элементами $\gamma_i(x)$.

В этом пункте будем полагать, что

$$\max \alpha_i + \gamma_i(x) < 1. \tag{2}$$

Пусть при фиксированном х

$$1-\gamma_{k_1}(x) \leqslant 1-\gamma_{k_2}(x) \leqslant \cdots \leqslant 1-\gamma_{k_r}(x).$$

Обозначим через P_i целую часть 1 — $\gamma_{h_i}(x)$ и пусть

$$l_0 = P_1 = \ldots = P_{\sigma_1 - 1}, \quad l_1 = P_{\sigma_1} = \ldots = P_{\sigma_2 - 1}, \ldots$$
$$l_s = P_{\sigma_s} = \cdots = P_r, \quad l_0 < l_1 < \cdots < l_s.$$

Подберем числа m_1, \ldots, m_s так, чтобы $l_{k+1} > m_{k+1} (1-\alpha) \geqslant l_k$, где $\alpha = \max \alpha_i$.

Рассмотрим уравнение

$$y\omega_y + C_1(x,0)\omega = f, (3)$$

и пусть X — матричное решение однородного уравнения, соответствующего (3) при начальных условиях: X(x,1)=E — единичная матрица. Обозначим через $\omega_j^{(1)}$ вектор с компонентами вектора $qX^{-1}\omega$, имеющими номера k_i , $i=1,\ldots,m_j$, а $\omega_j^{(2)}$ — вектор с остальными компонентами того же вектора; $j=0,1,\ldots$; $m_0=0$. Пусть $\omega=Q_i(f)$, $i=m_j+1,\ldots,m_{j+1}$ — решение уравнения (3), удовлетворяющее условию

$$\omega_j^{(1)}(x, 0) = 0, \quad \omega_j^{(2)}(x, 1) = 0.$$

Если же $i \geqslant m_{s+1} + 1$, то $Q_i(f)$ обозначает решение уравнения (3), удовлетворяющее условию $\omega(x,0) = 0$. Наконец, пусть $\theta(f)$ — решение уравнения

$$A_2\theta_y + C_2\theta = f \tag{4}$$

при условии $\theta(x,0) = 0$.

Теперь определим число p. Пусть матрица T осуществляет подобие матрицы $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ диагональной матрице, а δ_{ij} — общий элемент матрицы

$$^{1}/_{2}T^{-1}ZT - yT^{-1}A^{-1/_{2}}CA^{-1/_{2}}T$$

где Z — диагональная матрица, первые r элементов которой равны единице, а остальные равны $\alpha_{r+1},\ldots,\alpha_n$ соответственно. Число p определяется неравенством

$$\max_{i} \sum_{s=1}^{n} \max_{(x, y)} |\delta_{is}| < \frac{1}{2} + p.$$
 (5)

Нетрудно видеть, что наименьшее целое число p, удовлетворяющее неравенству

$$\max_{s,x} \left| \frac{1}{2} - \gamma_s \right| + \frac{\alpha}{2} + \max_{l,s,x} |\mu_l - \mu_s|^{\frac{(n-1)^2}{n}} < \frac{1}{2} + p,$$

будет удовлетворять условию (5), где

$$\mu_l = 1/2\gamma_l$$
, $l \leqslant r$, $\mu_l = 1/2\alpha_l$, $l \geqslant r+1$.

Пусть $\tau(x)$ — вектор, имеющий 2p+2 непрерывных производных. Определим векторы

$$\Phi = \sum_{k=1}^{p} \Phi_k, \quad \Psi = \sum_{k=1}^{p} \Psi_k,$$

где

$$\begin{split} \Phi_{h} &= Q_{h}(\varphi_{h}), \quad \Psi_{h} = \theta(\psi_{h}), \\ \varphi_{1} &= F_{1} - B_{1}(X_{x}\tau_{1} + X\tau_{1}') - C_{5}X\tau_{1} - B_{3}\tau_{2}' - C_{3}\tau_{2}, \\ \psi_{1} &= F_{2} - B_{2}\tau_{2}' - B_{3}^{*}(X_{x}\tau_{1} + X\tau_{1}') - C_{4}X\tau_{1} - C_{2}\tau_{2} - B_{3}^{*}\Phi_{1x} - C_{4}\Phi_{1}, \\ \varphi_{h} &= -C_{5}\Phi_{h-1} - B_{1}\Phi_{h-1, x} - B_{3}\Psi_{h-1, x} - C_{3}\Psi_{h-1}, \\ \psi_{h} &= -B_{2}\Psi_{h-1, x} - B_{3}^{*}\Phi_{hx} - C_{4}\Phi_{h}, \end{split}$$

 au_1 — вектор с первыми r компонентами вектора au_1 а au_2 — вектор с остальными n-r компонентами, F_1 — вектор с первыми r компонентами вектора F_1 — вектор с остальными n-r компонентами.

Обозначим через Ω квазидиагональную матрицу (X, E), E — единичная матрица порядка n-r, а через G — вектор (Φ, Ψ) . Будем говорить,

что решение U уравнения (1) принадлежит классу $\Sigma_p(X,G)$, если $\Omega^{-1}(U-G)$ для $y\geqslant 0$ имеет непрерывные производные по x-2p+2 порядка, где в $G-\tau(x)=U(x,0)$.

Теорема 1. Существует единственное решение $U \subseteq \Sigma_p(X,G)$ урав-

нения (1), удовлетворяющее условию

$$\Omega^{-1}(U-G)|_{t=0} = \tau(x). \tag{6}$$

Введением новой искомой функции

$$U = \Omega \tau + G + A^{-1/2}TV$$

задача редуцируется, как и в $\binom{6-9}{2}$, к системе интегральных уравнений Вольтерра, ядро которой имеет особенность первого порядка при y=0, В силу выбора p к этой системе применим метод последовательных приближений.

2. Пусть n — четное число, 2r = n и

$$\gamma_1 = \ldots = \gamma_r = \gamma(x) > 1. \tag{7}$$

Для простоты будем считать, что $\alpha_i = 0$.

Пусть

$$H = \left(\begin{array}{c} 0 & X \\ \dot{y}X & 0 \end{array}\right).$$

T е о р е м а $\ 2.\ 1)$ C уществует единственное решение U уравнения $\ (1)$, удовлетворяющее условиям

a) $H^{-1}U = V \subseteq \Sigma_q(y^{-1}X^{-1}, G_0),$

6)
$$\Omega_0^{-1}(V - G_0)|_{y=0} = \tau(x);$$
 (8)

2) существует единственное ограниченное решение U уравнения (1), удовлетворяющее условию

$$E_0 U|_{y=0} = E_0 \tau(x), \tag{9}$$

где $\Omega_{\rm o}$ — квазидиагональная матрица $(y^{-1}X^{-1},E), E_{\rm o}(0,E), E$ — единичная матрица порядка $r, a q, G_{\rm o}$ строятся аналогично p, G только для системы относительно функции $V = H^{-1}U$.

Теорема 2 редуцируется к теореме 1 заменой $V = H^{-1}U$.

3. Пусть теперь в системе (1) $\det A(x,y) \neq 0$ при $y \geqslant 0$, $\det B(x,y) \neq 0$ при y > 0, а $\det B(x,0) = 0$. Матрица B положительно определенная. Предположим, что матрица

$$\Gamma(x, y) = yB^{1/2}A^{-1}CB^{-1/2} - y(B^{1/2})yB^{-1/2}$$

непрерывна при $y\geqslant 0$ и пусть матрица T осуществляет подобие матрицы $B^{1\!\!2}A^{-1}B^{1\!\!2}$ диагональной матрице. Обозначим через ϵ_{ij} общий элемент матрицы $T^{-1}\Gamma T$ и пусть

$$\max_{i} \sum_{j=1}^{n} \max_{(x, y)} |\varepsilon_{ij}| < p.$$

Если коэффициенты уравнения (1) по y непрерывно дифференцируемы, а по x имеют непрерывные производные до 2p+2 порядка, то имеет место

T е о р е м а $\ 3.$ Существует единственное решение U системы (1), удовлетворяющее условию

 $U(x,0) = \tau(x). \tag{10}$

Замечание. Постановка задачи и результаты работы (14), вообще говоря, не верны. Система уравнений

$$yu_{1y} = u_{1x} + u_{2x}, \quad yu_{2y} = u_{1x} - u_{2x}$$

удовлетворяет всем условиям в (14). Но, построив общее решение, легковидеть, что задача с начальными данными $u_i(x,0) = \tau_i(x)$ имеет решение только в случае, когда $\tau_i(x)$ постоянны, вопреки утверждению (14), что эта задача имеет решение при любых достаточно гладких $\tau_i(x)$.

Новосибирский государственный университет

Поступило 29 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ S. Gellerstedt, Arkiv mat. astr. och fysik, 25A, № 29 (1937). ² H. С. Березин, Матем. сборн., 24 (66), № 2, 301 (1949). ³ M. Н. Ргоtter, Canad. J. Math., 6, № 4, 542 (1954). ⁴ К. И. Карапетян, ДАН, 106, № 6, 963 (1956). ⁵ Чи Минь-ю, Асtа Math. Sinica, 8, № 4, 521 (1958). ⁶ С. А. Терсенов, ДАН, 129, № 2, 276 (1959). ⁷ С. А. Терсенов, Сиб. матем. журн., 2, № 6, 913 (1961). ⁸ С. А. Терсенов, ДАН, 155, № 2, 285 (1964). ⁹ С. А. Терсенов, ДАН, 196, № 5, 1031 (1971). ¹⁰ О. А. Олейник, ДАН, 169, № 3, 525 (1966). ¹¹ О. А. Олейник, УМН, 1, 229 (1969). ¹² А. В. Нерсесян, Дифференциальные уравнения, 4, № 9, 1658 (1968). ¹³ А. В. Нерсесян, ДАН, 181, № 4, 798 (1968). ¹⁴ А. В. Нерсесян, ДАН, 198, № 2, 289 (1971).