МИНЕРАЛОГИЯ

УДК 552.16

В. С. ШКОЛЗИНСКИЙ

СООТНОШЕНИЕ ЖЕЛЕЗИСТОСТИ ГРАНАТА В СУБСТРАТЕ И ЖИЛЬНОМ МАТЕРИАЛЕ МИГМАТИТОВ И ПЕТРОЛОГИЧЕСКИЙ СМЫСЛ ПОНИЖЕННОЙ ЖЕЛЕЗИСТОСТИ ГРАНАТА В ЖИЛЬНОМ МАТЕРИАЛЕ

(Представлено академиком В. С. Соболевым 14 II 1972)

Состав темноцветных минералов в последнее время успешно применяется для выяснения физико-химических условий формирования горных пород. Отсюда очевидна важность изучения состава минералов из таких загадочных по происхождению образований, как мигматиты. В докембрии Алданского щита были изучены показатели преломления и химический состав граната в субстрате и жильном материале своеобразных мигматитов,

особенностью которых является обогашение по сравнению с субстратом темнопветной составляюшей жильного материала безволными минералами — гранатом, корлиеритом, гиперстеном. Эти миненередко присутствуют жильном материале даже тогда, когда их нет в субстрате. Жильный материал в таких мигматитах обладает признаками образования на месте - равномерным «пропитывающим» распределением в виде мелких тел, явной зависимостью его содержания и состава от состава субстрата.

Показатели преломления граната в субстрате и жильном материале изученных мигматитов, как видно из рис. 1, в общем изменяются сопряженно; при этом показатели

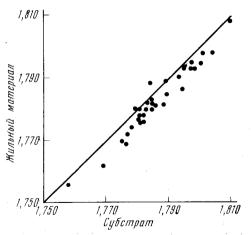


Рис. 1. Соотношение показателей преломления граната в субстрате и жильном материале мигматитов

преломления граната в жильном материале в среднем на 3—5 (до 8) тысячных ниже, чем в субстрате. Последнее, видимо, свидетельствует о несколько пониженной железистости граната в жильном материале по сравнению с субстратом. Химические анализы гранатов подтверждают такое предположение. Как видно из табл. 1*, общая и частная железистость граната в жильном материале соответственно на 0,9—6,4 и 0,6—6,5% ниже, чем в субстрате. Пониженную железистость граната в жильном материале по сравнению с субстратом отмечает также Л. П. Никитина (1) для докембрия Восточного Саяна.

^{*} Принятые нами сокращения: Bi — биотит, $\mathrm{Bi}_{\mathrm{ik}}$ — биотит из жильного материала, Q — кварц, Cor — кордиерит, Gr — гранат, $\mathrm{Gr}_{\mathrm{Mg}}$ — гранат более магнезиальный, Grf — графит, Hyp — гиперстен, k — приращение основности плагиоклаза, L — расплав, Or — калиевый полевой шпат, Pl_{32-40} — плагиоклаз и колебания его состава, Sil — силлиманит.

1	2	3	4	5	6	7	8	9	10
41,76 0,13 20,45 2,42 25,51 0,31 7,04 1,80 0,37 0,33 0,33 He обн.	40,49 0,15 21,02 2,10 25,05 0,26 7,18 2,10 0,37 0,50 0,27 0,05 0,07	41,26 0,14 20,52 3,60 25,30 0,30 7,16 1,05 0,25 0,37 0,31	39,82 0,13 21,34 3,25 25,73 0,40 7,94 1,05 0,13 0,23 0,27	19,89 2,55 25,69 0,50 5,51 2,12 0,23 0,52 0,61	16,02 4,18 12,65 0,02 13,22 0,30 0,14 8,70 3,15	39,58 0,25 20,85 2,43 27,24 0,55 6,15 1,49 0,25 0,43 0,35	36,02 4,08 16,92 2,78 13,65 0,02 13,36 0,60 0,14 9,00 2,61 0,32 0,84	42,27 0,04 20,73 0,14 19,06 0,16 15,00 0,85 0,12 0,26 0,72 0,08 0,30	43,56 0,12 21,43 0,38 15,81 0,23 15,26 1,36 0,20 0,42 0,54 Не обн. 0,16
100,49	99,56	100,25	100,40	100,22	100,08	99,68	99,99	99,65	99,47
2,991 +0,444 SiO ₂ 0,009 1,987 0,148 0,865 1,755 0,019 0,158	2,991 +0,315 SiO ₂ 0,009 2,017 0,872 1,709 0,019 0,181 —	2,991 +0,375 SiO ₂ 0,009 1,941 0,225 0,873 1,721 0,020 0,093 —	2,992 +0,146 SiO ₂ 0,008 1,978 0,192 0,982 1,694 0,028 0,000	3,000 +0,606 SiO ₂ - 1,997 0,164 0,700 1,830 0,036 0,193 - - -	2,699 0,275 1,423 0,237 1,485 0,797 0,001 0,024 0,021 0,857 1,563 0,085	2,985 +0,241 SiO ₂ 0,015 2,003 0,149 0,747 1,857 0,038 0,130	2,717 0,231 1,466 0,194 1,510 0,861 0,001 0,048 0,021 0,866 1,314 0,200	2,988 +0,334 SiO ₂ 0,002 1,926 0,008 1,762 1,256 0,010 0,072	2,993 +0,506 SiO ₂ 0,007 2,024 0,023 1,824 0,974 0,014 0,117
67,0 68,7	66,2 67,8	66,3 69,0	64,5 66,9	72,3 74,0	34,9 41,1	71,7 72,9	36,3 41,1	41,3 41,7	34,8 35,3
	41,76 0,13 20,45 2,42 25,51 0,31 7,04 1,80 0,37 0,33 0,31 He обн. 0,06 2,991 +0,444 SiO ₂ 0,009 1,987 0,148 0,865 1,755 0,019 0,158	41,76 0,13 0,15 20,45 2,42 2,42 2,55,15 0,31 0,26 7,04 7,18 1,80 2,10 0,37 0,33 0,50 0,31 0,27 He обн. 0,06	41,76	41,76 40,49 41,26 39,82 0,13 0,15 0,14 0,13 20,45 21,02 20,52 21,34 25,51 25,05 25,30 25,73 0,31 0,26 0,30 0,40 7,04 7,18 7,16 7,94 1,80 2,10 1,05 1,05 0,37 0,37 0,25 0,13 0,33 0,50 0,37 0,23 0,31 0,27 0,31 0,27 0,36 0,07 0,10 0,11 100,49 99,56 100,25 100,40 2,991 2,991 2,991 2,992 4,044 +0,315 \$10,25 \$10,40 2,991 2,991 2,991 2,992 1,044 +0,315 \$10,375 \$10,40 2,991 2,991 2,991 1,941 1,978 0,009 0,009 0,009 0,009 0,009	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41,76 40,49 41,26 39,82 42,34 35,82 0,13 0,15 0,14 0,13 He oft. 4,86 20,45 21,02 20,52 21,34 19,89 16,02 2,42 2,10 3,60 3,25 2,55 4,18 25,51 25,50 25,30 25,73 25,69 12,65 0,31 0,26 0,30 0,40 0,50 0,02 7,04 7,18 7,16 7,94 5,51 13,22 1,80 2,10 1,05 1,05 2,12 0,30 0,37 0,37 0,25 0,13 0,23 0,14 0,33 0,50 0,37 0,23 0,52 8,70 0,31 0,27 0,31 0,27 0,61 3,15 He oft 0,05 0,70 0,10 0,11 0,26 0,31 0,06 0,7 0,10 0,11 0,26 0,31 0,04	41,76 40,49 41,26 39,82 42,34 35,82 39,58 0,13 0,15 0,14 0,13 He ofh. 4,86 0,25 20,45 21,02 20,52 21,34 19,89 16,02 20,85 2,42 2,10 3,60 3,25 2,55 4,18 2,43 25,51 25,60 25,03 25,73 25,69 12,65 27,24 0,31 0,26 0,30 0,40 0,50 0,02 0,55 7,04 7,18 7,16 7,94 5,51 13,22 6,15 1,80 2,10 1,05 1,05 2,12 0,30 1,49 0,37 0,37 0,25 0,13 0,23 0,14 0,25 0,33 0,50 0,37 0,23 0,52 8,70 0,43 0,31 0,27 0,31 0,27 0,61 3,15 0,35 He ofmapymeno 0,06 0,05 0,01 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41,76 40,49 41,26 39,82 42,34 35,82 39,58 36,02 42,27 0,13 0,15 0,14 0,13 He ooh. 4,86 0,25 4,08 0,04 20,45 21,02 20,52 21,34 19,89 16,02 20,85 16,92 20,73 2,42 2.10 3,60 3.25 2,55 4,18 2,43 2,78 0,14 25,51 25,50 25,30 25,73 25,69 12,65 27,24 13,66 19,06 0,31 0,26 0,30 0,40 0,50 0,02 0,55 0,02 0,16 7,04 7,18 7,16 7,94 5,51 13,22 6,15 13,36 16,00 1,80 2,10 1,05 1,05 2,12 0,30 1,49 0,60 0,85 0,37 0,37 0,25 0,13 0,23 0,14 0,25 0,14 0,12 0,31 0,27 0,31 0,27 0,61 3,15 0,35 2,61 0,72

^{• 1 —} гранат из субстрата (обр. № В-139), 14% Ві + 2% Gr + 19% Р $_{132-40}$ + 61% Q + 4% Or; 2—гранат из жильного материала (№ В-139-1) этого мигматита, 10% Ві + 10% Gr + 8% Р $_{128-39}$ + + 26% Q + 46% Or; нижнее течение р. Сутам; 3 — гранат из субстрата (№ В-74-24-а), 13% Ві + 20% Gr + 24% Сог + 20% Р $_{130-35}$ + 12% Or + 10% Q + 1% Gr; 4 — гранат из жильного материала (№ В-74-24-б) этого мигматита, 5% Ві + 22% Gr + 9% Сог + 23% Р $_{128-38}$ + 22% Or + 16% Q + 1% Grf; р. Алдан, в 2,5 км ниже устыр р. Нимгеркан) 5, 6 — гранат и биотит из субстрата (№ В-136-2), 12% Ві + 6% Gr + 38% Q + 54% Р $_{135-40}$; 7, 8 — гранат и биотит из жильного материала (№ В-136-3) этого мигматита, 2% Ві + 4% Gr + 48% Р $_{132-40}$ + 46% Q: нижнее течение р. Сутам; 9 — гранат из субстрата (№ В-144-3), 2% Ві + 15% Нур + 19% Gr + 1% Sіl + 51% Q + + 12% Р $_{118-27}$; 10 — гранат из жильного материала (№ В-144-3-а) этого мигматита, 1% Ві + 24% Gr + 1% Sіl + 40% Q + 26% Р $_{18-27}$ + 8% Or; среднее течение р. Сутам. 1, 2, 10 — аналитик Д. А. Кулагина, остальные — 3. Ф. Паринова. Минералы рассчитаны на 12 ат. кислорода.

Понижение железистости граната в жильном материале — довольно неожиданное и интересное явление: хорошо известна большая легкоплавкость альмандина по сравнению с пиропом и высокая железистость граната в гранитах (2). На причину понижения железистости граната в жильном материале проливают свет некоторые особенности состава рассматриваемых мигматитов.

Жильный материал изученных мигматитов по набору минералов обычно не отличается от субстрата и, следовательно, близок к состоянию полного химического равновесия с ним. Растворы, равновесные с жильным материалом, в таких мигматитах должны быть близки к равновесию и с субстратом, поэтому их просачивание (при равенстве P и T) не может приводить к метасоматическому развитию жильного материала. Стало быть, данное явление вряд ли можно объяснить метасоматическим генезисом мигматитов.

В субстрате рассматриваемых мигматитов часто присутствует ассоциация Pl+Or+Q; следовательно, какой-то фактор препятствует полному выплавлению кварц-полевошпатовой эвтектики из субстрата. Увеличение основности плагиоклаза в процессе плавления, видимо, не является глав-

ной причиной такого неполного выплавления, поскольку ассоциация кварца с полевыми шпатами сохраняется в субстрате с разным по составу плагиоклазом; кроме того, плагиоклаз в субстрате и жильном материале довольно близок по составу.

Если пренебречь незпачительным влиянием возможной небольшой разницы состава ортоклаза и кварца в субстрате и жильном материале, то неполное выплавление кварц-полевошпатовой эвтектики из субстрата, как видно из схемы такого выплавления $Pl + Or + Q + H_2O + \Delta V \rightarrow L$, может быть связано с педостатком либо воды, либо объема. Рассматриваемые мигматиты обладают признаками пластичного течения в момент образования, поэтому маловероятна связь неполного выплавления с недостатком объема. По-видимому, неполное выплавление связано с педостатком воды. Именно при недостатке воды в реакцию плавления должны вовлекаться гидроксилсодержащие темноцветные минералы с образованием водусодержащего расплава и безводных темноцветных минералов, как это имеет место в экспериментах по плавлению метаморфических пород (3).

В случае недостатка воды при процессах плавления в рассматриваемых мигматитах вода должна вести себя с физико-химической точки зрения инертно. Однако вода является паиболее подвижным компонентом при всех процессах (4), поэтому при ее инертном поведении следует предположить инертное же поведение и всех остальных компонентов. В таком случае практически в любых высокоглиноземистых мигматитах число фаз (обычно 5—7) заметно меньше числа главных химических компонентов (8 и более), поэтому происходящие в них процессы плавления чаще всего должны сопровождаться изменением состава минералов.

Реакция плавления в парагенезисе Bi + Gr + Pl + Or + Q:

7,19
$$K_{0,86}Mg_{1,5}Fe_{1,02}Al_{1,42}Si_{3,05}(OH)_{1,65}O_{10,35}+1,7Mg_{0,7}Fe_{2,1}Ca_{0,2}Al_2Si_3O_{12}+1,24K_{0,7}Na_{0,3}Al_1Si_3O_8+\left(0,846+\frac{0,468}{\kappa}\right)Na_{0,6}Ca_{0,4}Al_{1,4}Si_{2,6}O_8+0,33SiO_2=\\=6,91K_{0,89}Mg_{1,55}Fe_{1,06}Al_{1,47}Si_{2,99}(OH)_{1,51}O_{10,48}+1,7Mg_{0,75}Fe_{2,1}Ca_{0,15}Al_2Si_3O_{12}+\\+3,55K_{0,25}Na_{0,28}Ca_{0,07}Al_{0,67}Si_{2,13}O_{5,6}\cdot0,2H_2O+\\+\frac{0,168}{\kappa}Na_{0,6-\kappa}Ca_{0,4+\kappa}Al_{1,4+\kappa}Si_{2,6-\kappa}O_8$$
или 7,19Bi + 1,7Gr + 1,21Or + + $\left(0,846+\frac{0,168}{\kappa}\right)Pl_{40}+0,33Q=6,91Bi_{3k}+1,7Gr_{Mg}+3,55L+\frac{0,168}{\kappa}Pl_{40+\kappa}$ рассчитана при инертном поведении всех главных химических компонен-

рассчитана при инертном поведении всех главных химических компонентов — SiO_2 , Al_2O_3 , FeO, MgO, CaO, Na₂O, K₂O и H_2O . В ней изменялась основность плагиоклаза; состав биотита и граната в левой и правой ее частях примерно соответствует составу биотита и граната в субстрате и жильном материале в одном из изученных мигматитов (5—8 в табл. 1).

Как следует из реакции, плавление биотит-гранат-кварц-полевошнатовых пород (и других пород с биотитом и гранатом) в условиях закрытой системы при содержании воды главным образом в виде гидроксил-иона в биотите на первых стадиях должно приводить к образованию смеси расплава с твердыми фазами, темноцветная составляющая которой будет относительно обогащена гранатом (а также другими безводными минерадами) пониженной железистости. Последующая кристаллизация такой смеси в случае заторможенности регрессивных реакций, отжимания части насыщенного водой остаточного расплава может привести к образованию жильного материала с гранатом пониженной железистости, с темноцветной составляющей, обогащенной по сравнению с субстратом безводными минералами. При формировании, однако, жильного материала путем кристаллизации расплава, выплавлявшегося в условиях системы, открытой для воды, или в сухих условиях железистость граната в жильпом материале, вероятно, должна быть, наоборот, повышенной вследствие большей легкоплавкости альмандина по сравнению с пиропом.

Таким образом, пониженная железистость граната в жильном материале по сравнению с железистостью граната в субстрате (так же как и обогащение темноцветной составляющей жильного материала безводными минералами, сохранение в субстрате ассоциации кварца и полевых шпатов), по-видимому, связана с инертным поведением воды при процессах плавления в таких мигматитах. Приведенные данные подтверждают предположение ряда исследователей (5) о формировании некоторых анатектических расплавов без привноса воды.

Институт геологии Якутского филиала **Сибирского** отделения Академии наук СССР **Якутск** Поступило 2 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Н. Никитина, Тр. Лаб. геол. докембрия АН СССР, 18 (1964). ² Н. В. Соболев, Парагенетические типы гранатов, «Наука», 1964. ³ Г. фон Платен, Природа метаморфизма, М., 1967. ⁴ Д. С. Коржинский, Физико-химические основы анализа парагенезисов минералов, Изд. АН СССР, 1957. ⁵ В. С. Соболев, И. Т. Бакуменко и др., Геол. и геофиз., № 4 (1970).