УДК 517.55

MATEMATUKA

г. м. хенкин

АНАЛИТИЧЕСКИЙ ПОЛИЭДР ГОЛОМОФНО НЕ ЭКВИВАЛЕНТЕН СТРОГО ПСЕВДОВЫПУКЛОЙ ОБЛАСТИ

(Представлено академиком В. С. Владимировым 10 Х 1972)

А. Пуанкаре в 1907 г. обнаружил, что бидиск $\{(z_1, z_2) \in \mathbb{C}^2: |z_1| < 1, |z_2| < 1\}$ и шар $\{(z_1, z_2) \in \mathbb{C}^2: |z_1|^2 + |z_2|^2 < 1\}$ голоморфно не эквивалентны.

Одно из доказательств теоремы A. Пуанкаре основано на вычислении и сравнении групп автоморфизмов бидиска и шара. Далеко идущее обобщение этого доказательства привело к полной классификации однородных областей в \mathbb{C}^n (см. (¹)).

Другое доказательство теоремы А. Пуанкаре основано на сравнении инвариантных метрик в бидиске и шаре. Развивая этот подход, удается освободиться от использования в нем групповой структуры рассматриваемых областей, что приводит, например, к доказательству голоморфной неэквивалентности любого аналитического полиэдра общего положения и любой строго псевдовыпуклой области в \mathbb{C}^n .

Пусть D — строго псевдовыпуклая область в \mathbb{C}^n , т. е. $D = \{z \in \Omega: \rho(z) < 0\}$, где $\rho(z)$ — дважды непрерывно дифференцируемая, строго плюрисубгармоническая функция в области $\Omega \supset \overline{D}$, причем grad $\rho(z) \neq 0$ в точках $z \in \partial D$.

Обозначим через $C_{\scriptscriptstyle D}(z',\,z'')$ инвариантное расстояние Каратеодори между точками z' и z'' области D. Имеем

$$C_D(dz) = C_D(z, z + dz) = \sup_{\substack{f \in H(D) \\ |f| < 1}} \left| \frac{\partial f}{\partial z}(z) \cdot dz \right|. \tag{1}$$

Для точки $\xi \in \partial D$ обозначим через C_t комплексную касательную плоскость к ∂D в точке ξ , а через N_t — комплексную прямую, ортогонально пересекающую C_t в точке ξ . Для каждой точки $z \in D$, достаточно близкой к ∂D , на ∂D определена единственная точка $\xi(z)$, для которой $|z - \xi(z)| = \delta(z, \partial D)$, где $\delta(z, \partial D)$ — расстояние от $z \in D$ до ∂D .

 Π в м м а $\,1\,^*$. Для любой точки $z \in D$, достаточно близкой к $\,\partial D$, имеют место неравенства

$$\gamma_2 \geqslant C_D(dz) \cdot \left(\frac{|(dz, N_{\zeta(z)})|}{\delta(z, \partial D)} + \frac{|(dz, C_{\zeta(z)})|}{\sqrt{\delta(z, \partial D)}} \right)^{-1} \geqslant \gamma_1,$$

где через $(dz, N_{\zeta(z)})$ и $(dz, C_{\zeta(z)})$ обозначены проекции dz на плоскости $N_{\zeta(z)}$ и $C_{\zeta(z)}$ соответственно, γ_1, γ_2 — положительные постоянные, зависящие лишь от области D.

Лемма 2**. Пусть G — произвольная ограниченная область в \mathbb{C}^n . Тогда для любой точки $z \in G$ имеет место неравенство

$$C_G(dz) \leq \sqrt{n+1} |dz| / \delta(z, \partial G)$$
.

** Мы не располагаем доказательством аналога леммы 2 для инвариантной метрики Бергмана. Только по этой причине мы пользуемся здесь метрикой Каратео-пори.

^{*} Можно показать, что справедлив аналог леммы 1 и для инвариантной метрики Бергмана, и тем самым доказать справедливость гипотезы Штейна (см. (⁶⁶), Введение).

Область G в \mathbb{C}^n назовем правильной исевдовыпуклой областью, если

$$G = \{ z \in \Omega \colon \rho_{\nu}(z) < 0, \ 1 \le \nu \le N \}, \tag{2}$$

где $\{\rho_v\}$ — вещественнозначные, дважды непрерывно дифференцируемые, илюрисубгармонические функции в области $\Omega \supset \overline{G}$, и

rang
$$\{\operatorname{grad} \rho_{\nu_i}, \ldots, \operatorname{grad} \rho_{\nu_k}\} = k, \quad 1 \leqslant \nu_1, \ldots, \nu_k \leqslant N,$$

$$k = 1, 2, \ldots, N.$$

на множестве $\{z \in \Omega : \rho_{\nu_1} = \rho_{\nu_2} = \ldots = \rho_{\nu_k} = 0\}.$

Теорема 1. Пусть G — правильная псевдовыпуклая область в \mathbb{C}^n , а D — строго псевдовыпуклая область. Пусть $W\colon z\to w(z)$ — биголоморфное отображение области G на область D. Тогда отображение W равномерно непрерывно в области G, при этом

$$|w(z') - w(z'')| \leq \gamma_3 |z' - z''|^{1/2},$$

где постоянная $\gamma_3 > 0$ не зависит от точек $z', z'' \in G$.

Доказательство. В силу инвариантности метрики Каратеодори имеем

$$C_{D}(dw(z)) = C_{G}(dz). \tag{3}$$

В силу леммы 1 и леммы 2 имеют место неравенства

$$C_{D}(dw) \geqslant \gamma_{1} |dw| / \sqrt{\delta(w, \partial D)}, \quad w \in D,$$

$$C_{G}(dz) \leqslant \sqrt{n+1} |dz| / \delta(z, \partial G), \quad z \in G.$$

$$(4)$$

Из (3) и (4) вытекает оценка

$$\left| \frac{dw}{dz} \right| \leqslant \frac{\sqrt{n+1}}{\gamma_1} \frac{\sqrt{\delta(w, \partial D)}}{\delta(z, \partial G)}. \tag{5}$$

Пусть

$$u(z) = \sup_{1 \leq v \leq N} \rho_v(z), \quad z \in G.$$
 (6)

Из (2) и (6), пользуясь гладкостью функций $\{\rho_v(z)\}$, извлекаем неравенство

 $|u(z)| \leq \gamma_4 \delta(z, \, \partial G), \tag{7}$

где постоянная $\gamma_4 > 0$ не зависит от $z \in G$.

Обозначим через $Z: w \to z(w)$ отображение, обратное к биголоморфному отображению $W: z \to w(z)$. Из инвариантности плюрисубгармонических функций при биголоморфных отображениях следует, что u(z(w)) — строго отрицательная плюрисубгармоническая функция от w в области D. Используя лемму М. В. Келдыша и М. А. Лаврентьева $(^2)$, имеем оценку

$$|u(z(w))| \ge \gamma_5 \delta(w, \partial D).$$
 (8)

Из (5), (7) и (8) получаем неравенство

$$\left|\frac{dw}{dz}\right| \leqslant \frac{\sqrt{n+1}}{\gamma_1} \sqrt{\frac{\gamma_4}{\gamma_5}} \frac{1}{\sqrt{\delta(z,\partial G)}}.$$
 (9)

Из (9) с помощью аналога теоремы Харди — Литтлвуда (см. (³), стр. 399) выводим неравенство $|w(z')-w(z'')| \leqslant \gamma_3 |z'-z''|^{\gamma_3}$, где постоянная $\gamma_3>0$ не зависит от точек z' и z'' из G. Отметим, что именно здесь мы существенно используем правильность псевдовыпуклой области (2).

Теорема доказана.

Следствие (4). Пусть G и $D-\partial$ ве строго псевдовыпуклые области в пространстве \mathbb{C}^n , а W — биголоморфное отображение G на D. Тогда W продолжается до гомеоморфизма между \overline{G} и \overline{D} .

Правильную псевдовыпуклую область (2) назовем общим аналитическим полиэдром, если для любого v, $1 \le v \le N$, функция $\rho_v(z)$ может быть представлена в виде $\rho_v(z) = \varphi_v(F_v(z))$, где $F_v(z)$ — голоморфное отображение области Ω на область Ω' в комплексном пространстве меньшего числа переменных, а φ_v — дважды непрерывно дифференцируемая плюрисубгармоническая функция в области Ω' . Заметим, что в случае, когда $\{F_v(z)\}$ — комплекснозначные голоморфные функции, общий аналитический полиэдр превращается в обычный невырожденный аналитический полиэдр Вейля.

Теорема 2. Любой общий аналитический полиэдр не отображается

биголоморфно на строго псевдовыпуклую область.

Набросок доказательства. Допустим, что существует биголоморфное отображение $W: z \to w(z)$ общего аналитического полиэдра $G = \{z \in \Omega: \varphi_v(F_v(z)) < 0, v = 1, 2, ..., N\}$ на строго псевдовыпуклую область $D = \{w: \rho(w) < 0\}$. Из теоремы 1 следует, что отображение W продолжается до непрерывного отображения компакта G на компакт D. Фиксируем точку $\eta \in \partial D$. Пусть точка $\zeta \in \partial G$ такова, что $w(\zeta) = \eta$.

Фиксируем индекс v, для которого $\varphi_v(F_v(\zeta)) = 0$. Рассмотрим аналити-

ческое множество

$$A_{\eta} = \{ z \in \partial G \colon F_{\nu}(z) = F_{\nu}(\zeta), \, \varphi_{\alpha}(F_{\alpha}(z)) < 0, \, \alpha \neq \nu \}.$$

Из условия правильности области G следует, что A_{η} — аналитическое многообразие положительной размерности. Пусть $A_{\eta,\,\zeta}$ — связная компонента множества A_{η} , замыкание которой содержит точку ζ . Докажем сначала, что

$$W(A_{\eta, \xi}) = \{\eta\}. \tag{10}$$

Пусть η^* — произвольная точка из множества $W(A_{\eta, \, \xi}) \subset \partial D$. Так как область D строго псевдовынукла, то по теореме X. Росси существует (см. (5), глава IXC) функция f(w), непрерывная в \overline{D} , голоморфная в D и такая, что

$$|f(w)| < f(\eta^*) = 1,$$
 (11)

для всех $w \in \overline{D}$ и $w \neq \eta^*$. Рассмотрим непрерывную на \overline{G} , голоморфную в G функцию f(w(z)). Ввиду равномерной непрерывности функция f(w(z)) голоморфна не только в G, но и на аналитическом многообразии $A_{\eta, \, \zeta} \subset \partial G$. Для точек $z \in A_{\eta, \, \zeta}$ имеем неравенство $|f(w(z))| \leq f(\eta^*) = f(w(\zeta^*))$, где $\xi^* \in A_{\eta, \, \zeta}$. В силу принципа максимума для всех $z \in A_{\eta, \, \zeta}$, имеет место равенство $f(w(z)) = f(\eta^*)$. Пусть теперь $z \in A_{\eta, \, \zeta}$ и $|z - \zeta| \to 0$. Тогда $|f(\eta^*) - f(\eta)| = |f(w(z)) - f(w(\zeta))| \to 0$. Следовательно, $f(\eta^*) = f(\eta)$. В силу (11) получаем равенство $\eta^* = \eta$. Итак, равенство (10) доказано.

Фиксируем теперь произвольную точку $z^* \in A_{\eta,\,t}$. Пусть $z(t),\,0 \leqslant t \leqslant 1,-$ отрезок прямой линии, лежащий в области G и удовлетворяющий

условию

$$z(0) = z^*; \quad \delta(z(t), z^*) \le 2\delta(z(t), \partial G), \quad 0 \le t \le 1.$$
 (12)

Положим w(t) = W(z(t)). Так как $z(0) \in A_{\eta, t}$, то в силу (10) имеем $w(0) = \eta$. Мы показываем далее, что справедливы неравенства

$$\delta(w(t), \eta) \leq \gamma_6 \sqrt[\eta]{\delta(w(t), \partial D)},$$

$$\delta(w(t), C_{\eta}) \leq \gamma_6 \delta(w(t), \partial D),$$
(13)

где положительная постоянная γ_0 не зависит от t, $0 \le t \le 1$, C_{η} — комплексная касательная плоскость к ∂D в точке $\eta \in \partial D$. Если выполнены неравенства (13), то из обобщенной Е. Штейном теоремы Фату (см. (6a) или (66), теорема 9), следует, что для почти всех η на ∂D предел $\lim_{t\to 0} W^{-1}(w(t))$

зависит только от областей $G,\, D$ отображения W и точки $\eta.$ Но по построе-

нию $\lim W^{-1}(w(t)) = z^*$, где z^* – произвольно фиксированная точка из

множества Ал. г. Получили противоречие.

Внося в локазательство теорем 1 и 2 некоторые усовершенствования.

можно показать, что справедливы следующие утверждения.

Tеорема 1^* . Пусть w(z) — собственное голоморфное отображение правильной псевдовыпуклой области $G \subset \mathbb{C}^n$ на строго псевдовыпуклую область $D \subset \mathbb{C}^n$. Тогда $|w(z') - w(z'')| \leq \gamma_3 |z' - z''|^{\frac{1}{n}}$, где постоянная $\gamma_3 > 0$ не зависит от точек z', $z'' \in G$.

Теорема 2*. Любой общий аналитический полиэдр С не отображается голоморфно и собственно на область D, граница ∂D которой содержит

непустое открытое подмножество точек строгой выпуклости.

B случае, когда G — полидиск, а D — шар, утверждение последней тео-

ремы доказано В. Ротштейном в 1935 г. (см. (⁷)).

Мы называем точку $\zeta \in \partial D$ точкой строгой выпуклости, если в окрестности точки ξ граница ∂D дважды гладкая и существует такой

шар B, что $D \subset B$, а $\zeta \equiv \partial B$. Напомним здесь ((8), теорема 3.1), что любая область D с дважды гладкой границей ∂D имеет на границе непустое открытое подмножество точек строгой выпуклости.

Центральный экономико-математический институт Академии наук СССР Москва

Поступило 29 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Пятецкий-Шапиро, УМН, 20, 2 (122), 3 (1965). ² М. В. Келдыш, М. А. Лаврентьев, ДАН, 16, 151 (1937). ³ Г. М. Голузин, Геометрическая теория функций комплексного переменного, «Наука», 1966. ⁴ Г. А. Маргулис, Тез. докл. Всесоюзн. конфер. по теории функций, Харьков, 1971, стр. 137. ⁵ Р. Ганнинг, Х. Росси, Аналитические функции многих комплексных переменных, М., 1969. ⁶ Е. М. Stein, a) Bull. Am. Math. Soc., 76, 1292 (1970); б) Boundary Behavior of Holomorphic Functions of Several Complex Variables, Mathematical Notes, Princeton, 1972. ⁷ R. Remmert, K. Stein, Math. Z., 73, 159 (1960). ⁸ R. O. Wells, jr., Ann. Scuola Norm. Sup. Pisa, 23, № 2, 347 (1969).