УДК 547.57+541.6+543.422

ХИМИЯ

Член-корреспондент АН СССР Б. Н. ЛАСКОРИН, В. В. ЯКШИН, А. М. МИРОХИН

ИССЛЕДОВАНИЕ СТРУКТУРЫ 2-ОКСИФЕНОНОКСИМОВ

Соединения, содержащие 2-оксифенопоксимпую группировку, применяются в гидрометаллургической промышленности как экстрагенты для извлечения меди из растворов кучного выщелачивания медных руд $\binom{1}{2}$. Исследование механизма процесса экстракции меди осложивется отсутствием данных по физико-химическим свойствам и строению 2-оксифеноноксимпой группировки. Поэтому с целью изучения пространственной и элекронной структуры этих производных получен ряд соединений. представленных в табл. 1. Синтез соединений осуществлялся взаимодействием п-трет.-бутиланизола с хлорангидридами карбоновых кислот по реакции

Таблица 1 $(CH_3)_3C$ Спектральные свойства 2-эксифеноноксимов

Ŋį	Соединение			Ик. спектры, v (см ⁻¹)				Уф. спектры в растворе CCl ₄ (мµ)	
		R′	R"	твердые в KBr		0,002 <i>М</i> раствор в ССІ ₄			
	R			vOH(D)ac	"C=N	VOH(D) _{CB}	"C=N	$π → π*$ $λ_{\text{max}} (\text{lg ε})$	$n \to \pi^*$ $\lambda_{\max} (\lg \varepsilon)$
г	CH	CII	CII		1076 *		1600	906 (2. 709)	
1] [CH ₃	CH ₃ CH ₃	СН 3 Н		1676 * 1642 *		1689 1646	286 (3,482) 260 (4,022) **	319 (3,648)
Ш	CH_3	CH_3	D	2239	1641 *	2242	1642	200 (4,022)	320 (3,625)
ĺΫ	CH ₃	H	$\widetilde{\mathrm{CH}^3}$	3230	1655	3615	1626	292 (3,542)	
			•		1643				
V	СНз	D	CH_3	3180	1646	3609	1628	279 (3,686)	_
				3310		2656			
VI	CH ₃	Η	Н	2382 3255	1634	3608	1624	256 (3,903) **	246 /2 560)
VII	CH ₃	$^{\rm H}$	D	3290	1635	3602	1624	230 (3,303)	316 (3,569) 315 (3,618)
V 11	CII3	11	Ь	3390	1050	2655	1021		010 (0,010)
				2450		2500			
	1			2510		ļ	1		
VIII	C ₆ H ₅	П	${ m H}$	3355	1637	3613	1622	260 (4,104) **	318 (3,584)
		,		3230		3 6 31		276 (3,258)	
1X	(CH₃)₃C—			3310				` , ,	
\mathbf{X}	<u> </u>		3240	1640	3617		242 (4,052) **		
								. () /	
	N—OH								

^{*} Жидкая пленка между стеклами NaCl на приборе UK-10. ** В растворе метанола при l=1 см на приборе СФ-8.

Фриделя— Крафтса с последующим деметилированием образующихся 2-метоксифенонов HBr:

$$(CH_3)_3C$$
 \longrightarrow $-OCH_3 + RC(O)Cl \xrightarrow{AlCl_3}$

тде $R = CH_3$, C_6H_5 .

Полученные кетоны переводились в оксимы обработкой хлоргидратом гидроксиламина в спиртовом растворе в присутствии оснований (B):

$$(CH_3)_3C$$

$$C-R+R'ONH_2\cdot HCl \xrightarrow{\overline{B}}$$

$$OR''$$

$$C-R$$

$$||$$

$$OR''$$

$$OR''$$

$$C-R$$

$$||$$

$$OR''$$

$$OR''$$

тде R' = H, CH_3 , R'' = H. CH_3 , \overline{B} — триэтиламин, пиридин, сода.

В п.-к. спектрах VI и VIII (табл. 1) в твердом состоянии в таблетке КВг наблюдается широкая интепсивная полоса при 3255 и 3355 см⁻¹ соответственно, относящаяся к валентным колебаниям гидроксильной группы, ассоципрованной в водородной связи ($v_{\rm OH_{ac}}$). При растворении соединений в ССІ, и постепенном разбавлении происходит понижение интенсивности этой полосы и появляется узкая полоса при 3608 для VI и 3613 см⁻¹ для VIII, относящаяся к валентным колебаниям свободной гидроксильной группы ($v_{\rm OH_{CB}}$) (рис. 1). При концентрации 0,002 мол/л в п.-к. спектрах VI в растворе ССІ, наблюдается только $v_{\rm OHCB}$ и в этих условиях это соединение находится в неассоципрованной мономерной форме. Для VIII прочность водородной связи несколько выше и поэтому полная его диссоциация будет происходить в более разбавленных растворах.

Наличие самоассоциации 2-оксифеноноксимов подтверждается измерением молекулярных весов VI и VIII изописстическим методом на приборе «Hitachi 115» в растворе CCl₄, где экспериментально определенные молекулярные веса (253 для VI и 291 для VIII) приближаются к расчетным (208 для VI и 270 для VIII) при концентрациях ниже 0,001 мол/л и заметно повышаются с ростом концентрации.

Исследование температурной зависимости интенсивностей $v_{\rm OH_{ac}}$ и $v_{\rm OH_{ac}}$ в дианазоне температур $30-70^\circ$ для 0.025~M раствора VI и VIII в CCl_4 , показывает, что с повышением температуры интенсивность $v_{\rm OH_{ac}}$ возрастает при одновременном понижении интенсивности $v_{\rm OH_{ac}}$ и при температуре 70° эти вещества присутствуют в растворе CCl_4 преимущественно в мономерной форме (рис. 2).

При замещении протопов фенольной и оксимной группировки метильными группами в соединении I межмолекулярная ассоциация становится певозможной и это позволяет идентифицировать валептные колебания изолированной связи C=N ($v_{c=N}$ в табл. 1). Понижение $v_{c=N}$ в соединениях, содержащих в молекуле гидроксильные группы (II, IV, VI, VIII, X), говорит об участии азота оксимной группировки этих производных в образовании дополнительной связи с протонами гидроксильных групп. Напротив, замещение метильной группой только фенольного протона в IV не меняет характер спектра по сравнению с VI и v_{onac} в этом случае наблюдается в виде широкой полосы при 3255 см⁻¹, которая смещается до 3608 см⁻¹ в растворе CCl_4 . При длительном кипячении IV с металлическим

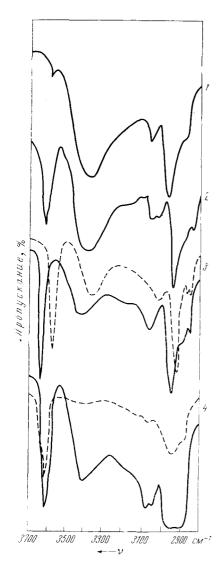
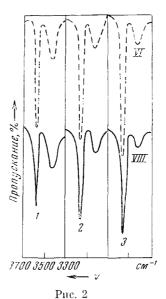



Рис. 1. И.-к. спектры 5-трет. бутил-2-оксиацетофеноноксима (VI) (штриховые лппии) и 5-трет.-бутил-2-оксибензофеноноксима (VIII) растворе (сплошные) В CCl₄: 1 — концентрация C = 0.5 мол/л при толщине слоя l = 0.106 мм; 2 - C == 0.1 mog/n, l = 0.606 mm;3-C=0.01 мол/л, l=4.012 мм; 4-C=0.002мол/л, l = 9.50 мм

Рис. 2. И.-к. спектры $0.025\,M$ растворов VI и VIII при разных температурах: $1-30,\ 2-50,\ 3-70^{\circ}\,\mathrm{C}$

Pirc. 1

натрием в толуоле и последующей обработке продуктов реакции D₂SO₄ образуется V (табл. 1), причем полное замещение водорода дейтерием не происходит из-за низкой реакционноспособности оксимной группы в IV. $({
m v}_{
m OD}{}_{
m ac})$ проявляются в ${
m ilde V}$ в области Валентные колебания связи ОD $2382~{\rm cm^{-1}}$ в твердом состоянии и смещаются до $2656~{\rm cm^{-1}}$ в 0.04~M растворе ССІ4, что подтверждает наличие в V межмолекулярной водородной связи. Сравнение спектральных констапт IV и VI выявляет большие аналогии в свойствах этих соединений, и тем более разительны отличия в поведении II, в котором протон оксимной группировки замещен на метильную группу. При взаимодействии II с металлическим натрием в толуоле при комнатной температуре образуется фенолят, который затем превращается в III действием D_2SO_4 . В н.-к. спектре III (табл. 1) ν_{OD} проявляется при 2239 см⁻¹ и практически не смещается при растворении в CCl₄, что характерио для внутримолекулярной водородной связи. Учитывая сдвиг уон при изотопном замещении водорода дейтерием при переходе от II к III, можно рассчитать voh для II при 3024 см⁻¹. Полученное значение находится в области валентных колебаний С-Н-связей фенильного кольца и

поэтому дополнительно исследован п.-к. спектр 0,01 M раствора II в ССІ₄ при толщине слоя l=4,012 мм, где в канал сравнения помещался 0,01 M раствор III в ССІ₄ при l=4,012 мм. Отсутствие поглощения в области 3700-2300 см⁻¹ свидетельствует о том, что $v_{\rm OH}$ фенольного гидроксила не проявляется в и.-к. спектрах 2-оксифеноноксимов. Это явление, названное Расмуссеном «хелатным сопряжением» (³), наблюдалось ранее для 2-оксифенонов (⁴, ⁵) и объясняется сильным уширением полосы $v_{\rm OH}$ при образовании впутримолекулярной водородной связи с участием фенольного протона и азота оксимной группировки:

Образование впутримолекулярного хелатного цикла вызывает появление $n \to \pi^*$ -перехода в у.-ф. спектрах II и III, который отсутствует в жирпоароматических оксимах (X в табл. 1) и алкилфенолах, а также в соединениях, где образование хелатного цикла по тем или иным причинам исключается (I, IV, V). Наличие интенсивного $n \to \pi^*$ -перехода в 2-оксифеноноксимах VI, VII и VIII свидетельствует об образовании внутримолекулярного хелатного цикла при участии фенольного протона и азота оксимной группировки. Одновременно с этим гидроксил оксимной группы VI, VII и VIII участвует в межмолекулярной водородной связи и строение образующихся ассоциатов в конденсированиом состоянии и в концентрированных растворах в CCl₄ можно представить в виде циклических димеров А или линейных n-меров \mathbf{E} :

Применяя к исследуемым системам критерий Пиментала и Мак-Клеллана (6) $I_{\rm ac}$ / $I_{\rm cb}^2$ = const, где $I_{\rm ac}$ и $I_{\rm cb}$ — интенсивность в максимуме поглощения $v_{\rm oh_{ac}}$ и $v_{\rm oh_{cb}}$, можно прийти к выводу, что в растворе CCl_4 наиболее вероятным представляется образование циклических димеров A.

Институт физики Земли им. О. Ю. Шмидта Академии паук СССР Москва Поступило 4 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. R. Swanson, U. S. Pat., 3 428 449, 4969. ² Б. Н. Ласкорин и др. Цвет. мет., № 6, 19 (1971). ³ R. S. Rasmussen, D. D. Tunicliff, J. Am. Chem. Soc., 71, 1068 (1949). ⁴ A. E. Martin, Nature, 166, 474 (1950). ⁵ L. Joris, P. R. Schleyer, J. Am. Chem. Soc., 90, 4589 (1968). ⁶ Дж. Пиментал, О. Мак-Клеллан, Водородная связь, М., 1964.