УЛК 547:541.6:541.127

ХИМИЯ

Академик АН УССР Л. М. ЛИТВИНЕНКО, А. Ф. ПОПОВ, Р. С. ПОПОВА, Л. А. ПЕРЕЛЬМАН

О ХАРАКТЕРЕ ПРОВОДИМОСТИ ЭЛЕКТРОНОДЕФИЦИТНОГО МОСТИКОВОГО АТОМА АЗОТА

Выявление закономерностей в передаче электронных эффектов через различные атомы и атомные группировки имеет большое значение для развития теории реакционной способности органических соединений. Особый интерес эта проблема приобретает в том случае, когда в качестве передающих звеньев выступают гетероатомы (¹, ²). При количественном исследовании электронной проводимости в ряду протяженных молекулярных систем нами было обнаружено (¹, ³, ¹), что мостиковый гетероатом М, обладающий неподеленными парами электронов, в соединениях типа I не только не ослабляет электронное взаимодействие между заместителем R и функциональной аминограпной по сравнению с безмостиковыми соединениями типа II, но даже способствует значительному увеличению этого взаимодействия

$$R$$
— M — NH_2 R — MH_2 — MH_2

Даппое явление, названное положительным мостиковым эффектом (п.м.э.) (1), обусловлено комбинированной передачей электронного влияния заместителя: по индукционному механизму через всю систему и механизму электронодонорного сопряжения мостикового гетерсатома с каждым из бензольных ядер (3, 4).

Поскольку относительная проводимость рассматриваемых систем существенно зависит от способности мостиковой группировки вступать в указанное сопряжение (2, 4), представляло интерес оценить проводимость в таких соединениях, где электронная пара мостикового гетероатома смещена к одному из соседних фрагментов системы. При этом сам гетероатом вследствие электронного дефицита на нем приобретает некоторый положительный заряд.

В качестве объектов исследования нами выбраны следующие реакционные серии: нуклеофильное замещение галогена в анилидах бромуксуствой кислоты (RC₆H₄NHCOCH₂Br) и основность производных 4-аминотрифениламина (4'-RC₆H₄N(Ar)C₆H₄NH₂-4).

В анилидах бромуксусной кислоты мостиковый атом азота находится в сильном сопряжении с карбонильной группой, в результате чего его электропная пара уже не может активно взаимодействовать с бензольным ядром (см. (*)). Данные по скорости реакций этих соединений с анилином и пиридином в нитробензоле представлены в табл. 1. Влияние структуры арильного радикала в α-бромацетанилидах количественно описывается уравнением Гаммета — Тафта. Соответствующие прямые имеют вид: а) для реакции с анилином

$$\lg k = -(4.63 \pm 0.01) + (0.134 \pm 0.011) \sigma^{0} \quad (s = 0.007; \quad r = 0.991)$$
(1)

б) для реакции с пиридином

$$\lg k = -(3.65 \pm 0.01) + (0.113 \pm 0.022)\sigma^{0} \quad (s = 0.015; \ r = 0.960). \tag{2}$$

Константы скорости $(k \cdot 10^5)$ л/мод $\mathbf{b} \cdot \mathbf{cer}$) взаимодействия * α-бромацетанилидов ** RC₆H₄NHCOCH₂Br с апилином и пири-дином в питробензоле при 25°

№ п.п.	R	Анцаин	Пиридин
1 2 3 4	H	$\begin{smallmatrix} 2,20\pm0,02\\2,36\pm0,04\\2,57\pm0,04\\2,91\pm0,04 \end{smallmatrix}$	22.5+0.7

^{*} Методика кинетических измерений и обработки результатов описана в (*),
** Синтез и очистку веществ производили в соответствии с (6, 7).

Величины р K_a^* аминов 4'-RC₆H₄N(Ar)C₆H₄NH₂-4** в 45% (по весу) водном диоксапе при 25°

№ п.п.	R	Ar	pKa
1	4'-NH ₂	$\begin{array}{c} 4^{\prime\prime}\text{-NH}_2\text{C}_6\text{H}_4 \\ \text{C}_6\text{H}_5 \\ \text{C}_6\text{H}_5 \\ 4^{\prime\prime}\text{-NO}_2\text{C}_6\text{H}_4 \\ 4^{\prime\prime}\text{-NO}_2\text{C}_6\text{H}_4 \end{array}$	5,30±0,04 ***
2	4'-NH ₂		4,67±0,02 ***
3	H		3,97±0,01
4	H		3,47±0,06
5	4'-NO ₂		3,31±0,08

^{*} Методика измерений и обработки результатов описана в (*).

** Синтез и очистка веществ описаны в (*,").

*** Приведены первые константы основности.

Полученные величины ρ° (0,134 и 0,113) свидетельствуют о чрезвычайно малой интенсивности взаимодействия заместителя В с реакционным центром в рассматриваемых соединениях. Изолирующее мостикового атома азота в них особенно четко обнаруживается на фоне величин о⁰ для реакций соответствующих безмостиковых соединений производных фенацилбромида (RC6H4COCH2Br) – с этими же пуклеофилами (0,594* и 0,393*). Сопоставление приведенных данных показывает. что мостиковый атом азота, находящийся рядом с карбонильной группой. ослабляет электронную проводимость системы почти в 4 раза.

При рассмотрении основности производных 4-аминотрифениламина (табл. 2) с точки зрешия настоящей работы наибольший интерес представ-

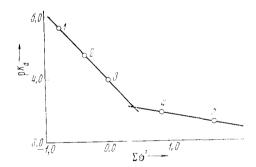


Рис. 1. Корреляция между величинами р K_a для ампнов $RC_6H_4N(Ar)$ - $C_6H_4NH_2$ и $\Sigma\sigma^\theta$ их арилов, присоединенных к мостиковому атому азота... Для соединений №№ 1 и 2 в коррелируемые величины pK_n введены статистические поправки —0,48 и —0,30 соответственно (10). Нумерация точек соответствует соединениям в табл. 2

ляют вещества №№ 4 п 5. Последние амины можно рассматривать как соединения типа I, где в качестве мостика M выступает (4"-NO₂C₆H₄) Nгруппа. Как следует из полученных результатов, наличие п-нитрофенильного заместителя у мостикового атома азота способствует столь сильному смещению электронов с него, что влияние 4'-заместителя на реакционный центр здесь значительно уменьшено по сравнению с соединениями $N \sim 1-3$. График, отражающий корреляцию величин р K_a производных 4-аминотрифениламина от Σσ⁰ для арилов, присоединенных к мостиковому атому азота, имеет излом (см. рис. 1). Левая ветвь этого графика оппсывается уравнением

$$pK_a = (3.96 \pm 0.01) - (1.12 \pm 0.04) \Sigma \sigma^0 \quad (s = 0.020; \ r = 0.998), \tag{3}$$

а проведенная через две точки правая ветвь — соотношением

$$pK_a = 3,63 - 0,20\Sigma\sigma^0.$$
 (4)

^{*} Рассчитано по данным (6).

Коэффициенты проводимости атома азота, рассчитанные из различных реакционных серий*

№ и.п.	Реакционная серия, р _м (для мостиковых соединений)	Эталонная реакционная серия, _{Ст} (безмостиковые соединения)	$\rho_{\text{OTH}} = \frac{\rho_{\text{M}}^{\text{O}}}{\rho_{\text{CT}}^{\text{O}}}$ $\left(Z_{\text{N}}^{\text{RP}}\right)$
1	АгNHCOCH ₂ Br $+$ C ₆ H ₅ NH ₂ \rightarrow \rightarrow ArNHCOCH ₂ NHC ₆ H ₅ $+$ HBr, интробензол, $\rho^0 = 0.134$	АгСОСН ₂ Вг+С ₆ Н ₅ NН ₂ → →АгСОСН ₂ NНС ₆ Н ₅ +НВг, интро- бензол, р ⁰ = 0.594 **	0,23
2	АгNHCOCH ₂ Br+C ₅ H ₅ N \rightarrow \rightarrow ArNHCOCH ₂ NC ₅ H ₅ ·Br $^-$, иптробензол, $\rho^0=0$,413	ArCOCH ₂ Br+C ₅ H ₅ N→	0,29
3	Ar ₂ NC ₆ H ₄ NH ₃	$ArC_6H_4\overset{+}{N}H_3 \rightleftarrows H^+ \dotplus ArC_6H_4NH_2, 45\%$ водный диоксан, $\rho = -0.96$ ***	0,21
4	ArŇH ₂ CH ₂ COOH ⇄H ⁴ ÷ +ArŇH ₂ CH ₂ COO⁻, вода, ρ=0,110 (¹⁴)	$ArCII_2COOH$ \rightleftarrows H^+ \dotplus $ArCII_2COO^-$, вода, $\rho = 0,489$ (12)	0,22

^{*} Использованы данные, полученные при 25°, ** Расс
зитано по данным (6), ** Для правой ветви рисунка.

Обнаруженный излом графика следует связывать не с изменением механизма рыссматриваемого процесса, а с достижением критического значения $\Sigma \sigma^0$, когда исчернывается способность гетероатома к электронодонорному сопряжению, в результате чего такой гетероатом должен выступать уже в качестве изолятора электронного взаимодействия между заместителем и реакционным центром (2, 3, 9, 11). Сравнение полученных величин ρ^0 с аналогичным значением для про-

изволных 4-аминобифенила (соединения типа II) показывает, что мостиковый атем азота может по-разному влиять на интенсивность взаимодействия между заместителем и реакционным центром. Когда к гетероатому присоединены заместители, не обладающие сильными электропоакцепторными свойствами, электронная проводимость мостиковой $(\rho^0 = -1.12 \text{ в уравнении } (3))$ превышает по абсолютному значению проводимость стандартной безмостиковой системы ($\rho = -0.96$ (табл. 3)), т. е. здесь отчетливо проявляется п.м.э. Если же электронная плотность на атоме азота существенно понижена, то проводимость системы резко падает. Это следует как из абсолютного значения полученной величины. ρ^0 в уравнении (4), так и из коэффициента проводимости $\rho_{\text{оти}}$, равного (табл. 3). Поскольку указанные коэффициенты характеризуют электронную проводимость системы после достижения критического значения $\Sigma \sigma^0$ (для системы трифениламина правая ветвь на рис. 1), то их следует обозначить как $Z_N^{\text{вр}}$. Значения $Z_N^{\text{вр}}$, вычисленные по всем рассматриваемым реакционным сериям, представлены в табл. 3. Там же приведена аналогичная величина, рассчитанная нами на основании данных по диссоциации карбоновых кислот типа ArNH₂CH₂COOH.

Из анализа результатов табл. З следует, что независимо от характера реакционной серии (электрофильная реакционная способность апилидов бромуксусной кислоты (№№1 и 2), основность аминов (№ 3), диссоциация карбоновых кислот (№ 4)), а также положения электроноакцептора, стягивающего электронную плотность с мостикового атома азота (этот электроноакцептор может находиться в цепи, соединяющей мостик с реакционным центром, как в №№ 1 и 2; оп может быть и вне этой цени,

^{***} Рассчитано по данным (12) для диссоциации аминов ArNH $_3$ с учетом электронной проводимости бензольного ядра ($\pi'=0.27$ (19).

как в случае $\mathbb{N}\mathbb{N}$ 3 п 4), электронная проводимость атома азота в рассматриваемых сериях практически совпадает *. Средняя величина $Z_N^{\text{кр}}$, вычисленная по всем четырем реакционным сериям, равна 0.24 ± 0.02 и значительно (в 1,6 раза) уступает коэффициенту индуктивной проводимости метиленового звена $(0.388 \ (^2))$.

Таким образом, мостиковый гетероатом, способность которого к электронодонорному сопряжению уже исчерпана, не только не увеличивает взаимодействие между заместителем и реакционным центром по сравнению с безмостиковой системой, как это наблюдается при проявлении п.м.э., но лаже существенно (более чем в 4 раза) уменьшает его.

Донецкое отделение физико-органической химии Института физической химии им. Л. В. Писаржевского Акалемии наук УССР

Поступило 24 VIII 4972

Иопецкий государственный университет

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Л. М. Литвиненко, Изв. АН СССР, ОХН, 1962, 1737. ² В. А. Пальм, Основы количественной теории органических реакций, Л., 1967, гл. VII. ³ Р. С. Попова кандидатская диссертация, Допецк, 1970. ⁴ Л. М. Литвиненко, Л. Ф. Попов пдр., Реакцион. способи. орг. соед., 5, 774 (1968). ⁵ В. Пийздеп, I. Ugi at al., Lieb. Ann., 586, 30 (1954). ⁶ Л. М. Литвиненко, Л. А. Перельман, Реакцион. способи. орг. соед., 8, 331 (1971). ⁷ С. Вівсһоff, Вег., 34, 2125 (1901); Синтезы орг. препаратов, 1, ИЛ, 1949, стр. 476; F. Кгöhnke, Н. Кйlber, Вег., 70В, 538 (1937); N. Drake, С. Еакег, W. Shenk, J. Am. Chem. Soc., 70, 677 (1948). ⁵ Е. В. Титов, Н. Г. Корженевская и др., Укр. хим. журп., 37, 790 (1971). ⁹ Л. М. Литвиненко, Р. С. Попова и др., Журп. орг. хим., 7, 800 (1971). ¹⁰ А. Альберт, Е. Сержент, Констаны попизации кислот и оснований. М.— Л., 1964, стр. 130. ¹⁴ Л. М. Литвиненко, Р. С. Попова, А. Ф. Поиов, ДАИ, 193, 593 (1970). ¹² Справочинк химика, 3, М.— Л., 1964, стр. 938. ¹³ Ю. А. Жданов, В. И. Мийкий, Корреляционный анализ в органической химии, Ростов-на-Дону, 1966, стр. 56. ¹⁴ А. Вгузоп, N. Davies, Е. Serjeant, J. Am. Chem. Soc., 85, 1933 (1963).

^{*} Отсюда следует, что в сериях №№ 1—3 на мостиковом атоме азота из-за сопряжения его с карбонильной или *п*-нитрофенильной группами появляется положительный заряд, соизмеримый с таковым в протонированных по азоту N-арилглиципах (№ 4).