УДК 541.636 ХИМИЯ

Б. А. ЭНГЛИН, А. Е. ЗОЛОТАРЕВ, Н. А. ГРИГОРЬЕВ, член-корреспондент АН СССР Р. Х. ФРЕЙДЛИНА

ИССЛЕДОВАНИЕ СТЕРЕОХИМИИ РАДИКАЛЬНОЙ ТЕЛОМЕРИЗАЦИИ ПРОПИЛЕНА ПОЛИГАЛОИДАЛКАНАМИ МЕТОДОМ КОНФОРМАЦИОННОГО П.М.Р. АНАЛИЗА

Исследование стереохимии элементарных актов замещения или присоединения алифатических радикалов с оценкой содержания и отнесением конфигураций диастереомерных форм продуктов началось лишь в последние годы. Модельной реакцией во всех случаях служила гомолитическая теломеризация, стереохимию которой рассматривали методами статистики с определением г.ж.х. диастереомерного состава хиральных теломергомологов (1-3). Автор (4) применил для этой цели конформационный п.м.р. анализ и на примере теломеризации винилхлорида полигалоидметанами обнаружил новые стереохимические закономерности реакций α, γ-дихлорзамещенных алифатических радикалов.

Мы распространили метод конформационного п.м.р. анализа продуктов на исследование стереохимии теломеризации пропилена (ПР) с CCl₄, CBrCl₃ и CCl₃CH₂CHClCH₃, определив конфигурации и содержание диастереомерных форм теломеров CCl₃CH₂CH (CH₃) CH₂CHClCH₃ (I), CCl₃CH₂.

·CH(CH₃)CH₂CHBrCH₃ (II), CH₃CHClCH₂CCl₂CH₂CHClCH₃ (III).

Теломеризацию проводили по методике $(^1,^2)$ в футерованных тефлоном автоклавах при <25 атм и 60° (CCl_4 , $CBrCl_3$, перекиси) или 95° ($CCl_3CH_2 \cdot CHClCH_3$, $Fe(CO)_5$ — ДМФ). Теломеры выделяли быстрой вакуумной разгонкой. Спектры п.м.р. снимали на спектрометре HX-90, Bruker, 90 Мгц (I и II) или R-20, «Хитачи Перкин — Эльмер», 60 Мгц (III), 34° , без предварительного разделения или обогащения рацемических форм. Ампулы с растворами анализируемых веществ продували аргоном, вакуумировали при -76° и запаивали. Изучали фрагменты CCl_3CH_2CH — или $-CCl_2CH_2CH$ —. Для предварительного отнесения линий и оценки соотношения знаков констант спин-спинового взаимодействия (к.с.в.) использовали INDOR — наблюдение эффекта Оверхаузера на модельных соединениях, включающих группы CCl_3CH_2CH —. Параметры (табл. 1) рассчитывали в приближении ABC по итерационной программе на ∂BM «Минск-22» с сопоставлением теоретических и экспериментальных частот (отклонение <0,01 гц) или интенсивностей (совпадение по основным линиям $\sim 5^\circ$).

При теломеризации ПР с CCl₄ выход той или иной рацемической формы I

RR, 55 - форма 1, 11

НА

НВ

НВ

О

О

О

TTT-конформация RR-энантио-

RR, SS-форма III (мезо)

HA HB'

2 3 4 5 6

HB HA'

ТТТТ-конформация RR-энантио-

Образование первого хирального центра нестереорегулярно. Атака телогена на димерный радикал по синдио-направлению приводит к RR-форме I, по изо-направлению к RS-1. В (1 , 2) установлено, что теломеризация ПР с

Таблица 1 *

Параметры (± 0.04 гц) спектров п.м.р. фрагмента — (Cl)CCl₂— CH_AH_B—CH_C— в диастереомерных рацемических формах I—III (20~% об. при 34°)

Форма	Растворитель	$J_{ m AC}$	J+	J-	$\Delta v_{ m AB}$
RS = I	CCl ₄ CH ₃ NO ₂	$\frac{3,43}{3,08}$	9,71 9,73	$\begin{bmatrix} -2,85 \\ -3,57 \end{bmatrix}$	12,95 $14,08$
RR = I	CCl ₄	5,07	9,73	0,41	4,67
THE RESERVE	CH ₃ NO ₂	4,78	9,75	-0,19	4,47
RS = II	CCl ₁	3,28	9,59	-3,03	10,38
	CH ₃ NO ₂	3,17	9,46	-3,12	12,03
RR = II	CCl	4,87	9,81	0,07	4,01
	CH ₃ NO ₂	4,20	9,41	-1,01	5,86
RS = III	CCl ₄	5,82	10,72	0,92	4,00
DD III	CH ₃ CN	7,00	10,61	3,39	1,83
RR = III	CCl ₄ CHC ₃ N	6,13 6,39	10,45	1,81 2,29	17,40 11,04

*
$$J^+ = \overline{J}_{AC} + \overline{J}_{BC}$$
; $J^- = \overline{J}_{AC} - \overline{J}_{BC}$; $\Delta v_{AB} = v_A - v_B$.

ССІ₄ при давлениях <150 атм и $55-200^\circ$ протекает синдионаправленно, т. е. в изученных нами условиях реакционная смесь должна содержать преимущественно RR-форму I, к которой были отнесены наблюдаемые в спектре п.м.р. I более интенсивные сигналы. Как видно из данных табл. 1, эта форма отличалась от RS-I по спектру CCl_3CH_2 -группы. Для RS-I при увеличении диэлектрической проницаемости среды ε не изменялась сумма J^+ и слабо возрастали разность J^- или Δv_{AB} . Все три параметра почти совпадали с найденными для CCl_3CH_2CH -фрагмента близкого по структуре к I хирального соединения CCl_3CH_2CH (CH_3) $CH_2CH_2CH_3$ (IV). Это указывало на соответствие конформационного состава фрагмента в I, IV с вероятностью $p_3 \approx 0$ и преобладанием в любых растворителях второго вращательного изомера (в CCl_4 по методу (5) $p_2 = 0,71$ и $\Delta E = E_4 - E_2 \approx 500$ кал/мол).

$$H_B$$
 H_C
 H_A
 H_B
 H_C
 H_A
 H_B
 H_C
 H_A
 H_C
 H_C

Другой результат получили для RR-формы I. Хотя вклад третьего ротамера в спектр п.м.р. видимо не увеличился ($J^+ \approx {\rm const}$), конформационное равновесие сместилось ($p_1 \approx p_2 \approx 0.5$, $\Delta E \approx 0$). Снижение конформационной

устойчивости сопровождалось уменьшением Δv_{AB} , т. е. при переходе от IV к I появление второго хирального центра с S-конфигурацией не повлияло на конформационный состав фрагмента, в то время как R-конфигурация его существенно изменила энергетику основных состояний CCl_3CH_2 -группы.

Причины подобных дальних эффектов становятся понятными при расконформационных особенностей второго фрагмента -СН (СН₃) СН₂СНСІСН₃. Исследование методами и.-к. и п.м.р. (⁶) распределения вращательных изомеров этого фрагмента в dl-форме 2,4-дихлорпентана показало преобладание для всех фазовых состояний, диапазона температур $\sim 200^{\circ}$ и разнообразных растворителей, ТТ-конформера ($p \approx$ ≈ 0.9 в CCl, при 20°). Известно (7), что 2-хлорбутан в жидкой фазе существует преимущественно в конформации с транс-ориентированными СН3группами. По данным (4), энергия конформера ТТ-типа минимальна и для CCl₃CH₂CHClCH₂CHCl₂ или CH₃CHClCH₂CHCl₂ (p=0,9 в CCl₄ при 34°) т. е. замещение одной или двух СН₃-групп в 2,4-дихлорпентане на близкие к ним по объему Cl и CH2-группу не приводит к уменьшению стабильности конформации плоского зигзага, предпочтительной видимо, и для молекулы Î. Олнако в конформации ТТТ может существовать только RS-I. Для всех остальных конформеров двух форм I характерно увеличение невыгодных 1,3-взаимодействий соседних групп. Используя рассчитанные по табл. 1 вероятности конформеров $CCl_3CH_2CH(CH_3)$ -фрагмента и принимая p=0.9(4, 6) для второго фрагмента молекулы, получили ориентировочное содержание в CCl_4 (34°) основных конформеров RS-1: TTT = 0.64, GTT = 0.26; TGG < 0.1; GGG < 0.05. Для RR-формы I конформационный состав фрагмента CCl₃CH₂CH (CH₃) (табл. 1) указывал на одинаковое содержание пар изомеров TTG ≈ GTG, TGT ≈ GGT и т. д. Отсюда находят объяснение и различия в Δv_{AB} диастереомерных форм І. Поскольку все конформеры этих форм не имеют элементов симметрии, диастереотопное магнитное окружение На. Не не обменивается при врашении и обе формы должны иметь геминальный сдвиг Δv_{AB} , величина которого по данным для модельных хиральных полигалондалканов, существенно зависит от вращательного усреднения. В изученных растворителях RS-модификация (изо-атака, схема) образуется и существует преимущественно в конформации TTT. RR-форма после образования (S-атака) оказывается в энергетически менее выгодной конформации ТТС, легко переходя в другие, мало отличающиеся по энергиям конформеры. Близкие вероятности последних и приводят, очевидно, к некоторому дополнительному усреднению магнитного окружения протонов CCl₃CH₂-группы в RR-I.

Таким образом, отнесение методом п.м.р. конфигураций диастереомерных форм несимметричных соединений оказалось противоположным по предпосылкам, развитым (6) для диссимметрических хиральных соединений, сохраняющих элементы симметрии. Например, у 2,4-дигалоидзамещенных пентанов мезо-форма конформационно подвижна, но обладает не**у**средняемым Δv_{AB} . dl-форма, хотя и находится, как правило, в одной конформации плоского зигзага, вследствие симметрии C_2 у последней, имеет химически эквивалентные CH_2 -протоны. Наличие или отсутствие Δν_{ав} служит, тем самым, надежным критерием для отнесения конфигураций рацемических форм подобных молекул. В случае несимметричных соединений с двумя хиральными центрами обе диастереомерные формы характеризуются Δv_{AB} . Величина его будет тем больше, чем выше конформационная устойчивость молекулы и чем меньше вращательное усреднение различий в анизотропных вкладах заместителей при асимметрических атомах. Поэтому отнесение конфигураций для несимметричных моделей осуществимо только на основании конформационного анализа при сопоставдении «жесткости» молекулы с диастереотопными сдвигами и может быть

обратным наблюдаемому для 2,4-дихлорзамещенных пентанов. Примером такого «обратного» отнесения оказалась молекула III.

Примером такого «обратного» отнесения оказалась молекула 111. RS-форма III со свойствами симметрии, подобными мезо-2,4-дизамещен-

ным пентанам (6), может иметь неусредняемый врашением Λv_{AB} , RR-форма III с простой осью вращения С₂ для ТТ-конформера не обладает, тем не менее, особенностями dl-модификаций пентанов. Ближайшее окружение протонов НА, НВ даже в ТТТТ-состоянии асимметрично и не обменивается операцией симметрии С2. В результате должна возникать некоторая анизохронность CH_2 -протонов и в RR-форме III, что нашло подтверждение в спектре п.м.р. III (см. табл. 1). Преобладание в малополярной среде одного из конформеров фрагмента $\mathrm{CH_3CHClCH_2}$ — отвечало форме с большим $\Delta \mathrm{v_{AB}}$ и, наоборот, малый Δv_{AB} соответствовал форме с приблизительно одинаковыми вероятностями основных конформеров фрагмента. Эти закономерности исключали отнесение конфигураций по формальному сходству dl, мезоформ III и 2,4-дихлорпентана, но могли быть использованы в рамках представлений, развитых из оценки конфигураций двух форм I. Параметры спектра п.м.р. III зависели от распределения изомеров вращения вокруг связей C_2 — C_3 и C_5 — C_6 . Повышение ε среды при постоянстве J^+ заметно увеличивало разность J^- и снижало Δv_{AB} (табл. 1). Подобные изменения, обнаруженные и для других близких к III по строению модельных соединений, привели к выводу, что для III в любой среде и при всех возможных конфигурациях хиральных центров преобладает ротамер с транс-ориентацией групп CH₃ ↔ CCl₂. Отсюда по данным табл. 1, предполагая, что фрагмент $\hat{C_2}$ — C_3 — C_4 — C_5 — C_6 находится преимущественно в ТТ-конформации мы рассчитали содержание основных конформеров каждой формы III, определяющих вид спектра п.м.р.

Оказалось, что для формы с малым Δv_{AB} эти конформеры сопоставимы по числу и характеру отрицательных 1,3-взаимодействий соседних атомов Cl и CH₃-групп, чем и объясняется, возможно, их почти одинаковое содержание в растворе (TTTT = 0,31, TTTG = GTTT = 0,25, GTTG = 0,19). Выравнивание конформационного состава, приводя к более эффективному усреднению различий в магнитном окружении CH₂-протонов, сопровождается, как и для I, уменьшением Δv_{AB} . Форма III с такими параметрами была отнесена к RS-типу. Для другой формы III несвязанные 1,3-взаимодействия в конформации плоскости зигзага заметно ниже, чем у остальных конформеров. В результате возрастает предпочтительность TTTT-конформера (TTTT = 0,40, TTTG = GTTT = 0,23, GTTG = 0,14) и увеличивает-

ся Дуав. Конформационное состояние двух форм II полностью совпало с обнаруженным у I (табл. 1), что позволило форму с большим Δv_{AB} и преобладанием одного из двух основных конформеров ССІ_зСН₂СН-фрагмента отнести к RS-конфигурации, а форму с малыми значениями Δv_{AB} и $|J^-|$ к RRконфигурации. Оценка содержания диастереомерных форм I-III в реакционных смесях по хорошо разрешенным сигналам СН2- или СН3-групп привела к соотношению RR/RS = 1.5 для I, II и ~ 1.0 для III. Следовательно, в изученных условиях передача цепи на CCl₄ и CBrCl₃ а, у-диметилзамещенным алифатическим радикалом (схема I) протекала с одинаковой стереонаправленностью и предпочтительной атакой по направлению, противоположному положению ү-заместителя (1,3-асимметрическая индукция (1). Реакция передачи цепи радикалом с более удаленным хиральным центром не имела стереонаправленности, видимо, из-за отсутствия индукции со стороны 1,5-расположенного асимметрического атома углерода. Институт элементоорганических соединений Поступило Академии наук СССР 10 I 1973 Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. Н. Осипов, Б. А. Энглин, Изв. АН СССР, сер. хим., 1969. 2430; Р. Х. Фрейдлина, Б. Н. Осипов, Б. А. Энглин, там же, 1970, 786. ² Ш. А. Каранетян, Г. П. Шаховский и др., Изв. АН СССР, сер. хим., 1970, 1303. ³ G. Р. Scott, А. М. R. Elghoul, J. Polymer Sci., А 1, 8, 2255 (1970). ⁴ Т. А. Онищенко, Кандидатская диссертация, ИНЭОС, М., 1971. ⁵ Е. I. Snyder, J. Am. Chem. Soc., 88, 1165 (1966). ⁶ Т. Shimanouchi, M. Tasumi, Spectrochim. acta, 17, 755 (1961); В. Schneider, J. Stokr et al., J. Polymer Sci., C22, 1073 (1969). ⁷ Л. П. Мелихова, Ю. А. Пентин, О. Д. Ульянова, ЖСХ, 4, 535 (1963).