УДК 513.6

MATEMATUKA

Академик АН БССР В. П. ПЛАТОНОВ, М. В. МИЛОВАНОВ

ОПРЕДЕЛЯЕМОСТЬ АЛГЕБРАИЧЕСКИХ ГРУПП АРИФМЕТИЧЕСКИМИ ПОДГРУППАМИ

Пусть G—связная алгебраическая группа, определенная над полем Q рациональных чисел; Γ — некоторая арифметическая подгруппа G, т. е. нодгруппа, сонзмеримая с G_z (за всеми необходимыми сведениями об алгебраических и арифметических группах мы отсылаем к лекциям Бореля (1)). Естественно возникает интересная задача: выяснить, в какой мере структура G как алгебраической группы определяется абстрактной структурой группы Γ ? Более точный вопрос: когда из абстрактного изоморфизма $\Gamma \leftrightarrow \Gamma'$ арифметических подгрупп Γ и Γ' алгебраических групп G и G' соответственно следует бирациональный изоморфизм групп $G \leftrightarrow G'$? Для наиболее важного класса алгебраических групп—полупростых групп эта задача недавно решена: в (2) — для групи G с условнем $\operatorname{rank}_Q G > 1$; в (3) — для $\operatorname{rank}_Q G = 1$, и для $\operatorname{rank}_Q G = 0$ решение вытекает из более общих и глубоких результатов Мостова (4) о продолжении изоморфизмов равномерных дискретных подгрупп полупростых групп $\operatorname{Ли}$.

Цель настоящей статьи — решение задачи в общем случае с учетом приведенных выше результатов. Точнее, мы будем рассматривать случай существенно нередуктивных групп, в частности, разрешнмых, к которому теперь все сводится. Отметим влияние на нашу статью работы Мостова о дискретных подгруппах групп Ли с радикалом (5), а также больного неопубликованного мемуара Г. А. Маргулиса «Неравномерные решетки в полупростых алгебранческих группах», любезно предоставленного нам автором.

В общем случае, аналогично полупростому, на G и Γ необходимо наложить следующие естественные и понятные ограничения: 1) Γ илотна в G относительно топологин Зарисского (в полупростом случае это эквивалентно отсутствию у группы G_R компактных факторов); 2) G не является почти прямым произведением над Q связных подгрупп (в противном случае, если $G = G_1 \times G_2$ — почти прямое произведение, то существуют такие арифметические подгруппы $H_1 \subset G_1$ и $H_2 \subset G_2$, что $H_1 \times H_2$ — подгруппа конечного индекса в Γ , и, как правило, все сводится к вопросу об определяемости компонент G_1 , G_2). Пусть в дальнейшем G и Γ удовлетворяют условиям 1) и 2).

Напомним, что группа G является полупрямым произведением $G=D(G)\cdot U(G)$, где D(G) — векоторая максимальная Q-определенная редуктивная подгруппа G, U(G) — унипотентный радикал, причем все D(G) сопряжены элементом u из U_Q . Такие разложения пногда называют разложениями Шевалле. Группа D есть почти прямое произведение $D=S\cdot T$, где S — полупростая подгруппа, а T — центральный тор (понятно, что $T\cdot U$ — разрешимый радикал G). Если унипотентный радикал U=(e), тогда можно считать, что G либо полупроста, либо тор. G в нолупростом случае G полностью определяется своей арифметической подгруппой. Если же G — тор, тогда определяемость — весьма редкое явленье

Вот первый приходящий на ум убедительный пример. Пусть K_i — неэквивалентные вещественные квадратичные расширения $Q, K_i^{(1)}$ — под-

группа элементов K_i с единичной нормой, T_i — одномерный тор с $(T_i)_Q = K_i^{(1)}$. Бесконечная циклическая подгруппа Γ_i , порожденная основной единицей K_i , будет арифметической подгруппой T_i . Все Γ_i изоморфны, но T_i и T_j при $i \neq j$ не являются Q-изоморфными.

Если же $U \neq (e)$, то ситуация оказывается иной, как показывает

Основная теорема. Пусть унипотентный радикал группы G нетривиален. Если центры групп G и G' не содержат элементов конечного порядка, то изоморфизм $\varphi\colon \Gamma \to \Gamma'$ арифметических подгрупп $\Gamma \subseteq G$ и $\Gamma' \subseteq G'$ индуцирует бирациональный Q-изоморфизм $\Phi\colon G \to G'$. Если, кроме того, центр разрешимого радикала G тривиален, то Φ совпадает C C на подгруппе конечного индекса группы C в общем случае группа C определяется C C точностью до C-изогении.

Замечание 1. Механизм индуцирования Φ довольно прост и выясняется в процессе доказательства. Для алгебраических групп, радикал которых содержит нетривиальный центр, совиадение Φ с φ на подгруппе конечного индекса группы Γ может не иметь места, как показывают построенные нами контрпримеры.

Замечание 2. Основная теорема и ее доказательство остаются верными, если условие 2 заменить более слабым условием: присоединенное действие редуктивной части D на алгебре Ли L(U) эффективно, или, что эквивалентно, действие D на U почти эффективно. Группы G с таким свойством мы называем существенно нередуктивными.

Мы ограничимся здесь доказательством основной теоремы для случая разрешимой G; в общем случае доказательство вполне аналогично, хотя и становится сложнее. В дальнейшем под алгебраической группой мы везде будем понимать разрешимую алгебраическую группу, а ее арифметическую подгруппу, не ограничивая общности, всегда будем считать без элементов конечного порядка.

Пусть $G = T(G) \cdot \hat{U}(G)$ и $G' = T(G') \cdot U(G')$ — разложения Шевалле алгебранческих групп G и G'. Обозначим $\Gamma \cap T(G) = T(\Gamma)$, $\Gamma \cap U(G) = U(\Gamma)$; $\Gamma' \cap T(G') = T(\Gamma')$, $\Gamma' \cap U(G') = U(\Gamma')$. Хорошо известно, что $T(\Gamma) \cdot U(\Gamma)$, $T(\Gamma') \cdot U(\Gamma')$ — подгруппы конечного индекса соответственно в Γ и Γ' .

Рассмотрим сначала случай, когда центры Z(G) и Z(G') групи G и G' не содержат элементов конечного порядка. Это означает, что $Z(G) \subseteq U(G)$, $Z(G') \subseteq U(G')$. Изоморфизм $\varphi : \Gamma \to \Gamma'$ будем называть нормальным, если существуют такие максимальные торы T(G) и T(G'), что $\varphi(T(\Gamma)) \subseteq T(\Gamma')$, $\varphi(U(\Gamma)) \subseteq U(\Gamma')$. Заметим, что в действительности последнее включение всегда выполняется в наших условиях и мы его добавили для полноты.

Ключевую роль в доказательстве основной теоремы играет

Теорема 1. Если Γ и Γ' изоморфны, а центры групп G и G' не содержат элементов конечного порядка, то существуют нормально изоморфные подгруппы конечного индекса $H \subset \Gamma$ и $H' \subset \Gamma'$. Если центры G и G' тривиальны, то всякий изоморфизм φ : $\Gamma \to \Gamma'$ является нормальным.

Доказательство. Пусть $\varphi\colon \Gamma \to \Gamma'$ — заданный изоморфизм. Покажем, что $U(\Gamma)$ — нильпотентный радикал в Γ . Действительно, пусть $N = DU(\Gamma)$ — нильпотентный нормальный делитель Γ . Тогда \overline{N} — нильпотентный нормальный делитель в $\overline{\Gamma}$ и его полупростая часть \overline{N}_s — нетривиальная инвариантная подгруппа (8). Тогда \overline{N}_s содержится в центре группы $\overline{\Gamma} = G$ ввиду связности G и полупростоты элементов \overline{N}_s . Но центр G не содержит элементов конечного порядка, значит, $\overline{N}_s = (e)$ и $N = U(\Gamma)$. Апалогично, $U(\Gamma')$ — нильпотентный радикал Γ' . Поэтому $\varphi(U(\Gamma)) = U(\Gamma')$.

Используя экспоненциальное отображение, мы будем отождествлять, для простоты обозначений, U(G) с ее алгеброй Ли. Определим представление ψ группы G в группу автоморфизмов алгебры Ли U(G) по следующей формуле: $\psi(g)(u) = gug^{-1}$, где $g \in G$, $u \in U(G)$. Аналогично опреде-

лим представление ψ' группы G' в группу автоморфизмов алгебры U(G') . Тогда ψ и $\psi'-Q$ -рациональные гомоморфизмы G и G'. Так как T(G) \cap $\cap Z(G) = (e)$, то ядро ψ совпадает с центром группы U(G) - Z(U). Аналогично ядро ψ' совпадает с Z(U'). Легко видеть, что $\psi(G)$ и $\psi'(G') - Q$ определенные алгебраические группы и $\psi(T(G))$, $\psi'(T(G'))$ – их максимальные Q-определенные торы. Обозначим через ϕ_u ограничение ϕ на $U(\Gamma)$. Так как U(G) — унипотентная алгебраическая группа, то $U(\Gamma)$ плотная подгруппа в U(G). Из плотности Γ в G вытекает плотность $T(\Gamma)$ в T(G). По теореме Мальцева (6), φ_u можно единственным образом продолжить до рационального изоморфизма $\tilde{\varphi}_u \colon U(G) \to U(G')$. Так как $U(\Gamma)$ и $U(\Gamma')$ — плотные арифметические подгруппы в U(G) и U(G') соответственно и так как $\phi_u(\hat{U}(\Gamma)) = U(\Gamma')$, то $\tilde{\phi}_u - Q$ -изоморфизм. $\tilde{\phi}_u$ естественным образом индуцирует Q-рациональное представление ф групны G в группу автоморфизмов алгебры U(G'). При этом для каждого $g \in$ $\in T(\Gamma)$ справедливо $\tilde{\psi}(g) = \psi'(\varphi(g))$. В частности, $\tilde{\psi}(T(\Gamma)) = \psi'(\varphi(T(\Gamma)))$. плотна в T(G), то $\overline{\tilde{\psi}(T(\Gamma))} = \tilde{\psi}(T(G))$, так что $T(\Gamma)$ $\overline{\psi'(\phi(T(\Gamma)))} = \tilde{\psi}(T(G))$. Очевидно, $\tilde{\psi}(T(G)) \subseteq \psi'(G')$ и $\tilde{\psi}(T(G))$ есть О-определенный тор. Нетрудно видеть, что его размерность совпадает с размерностью $\psi'(T(G'))$, и потому $\tilde{\psi}(T(G))$ есть максимальный тор в $\bar{\psi}'(G')$. $(\psi')^{-1}(\bar{\psi}(T(G)))$ есть полупрямое произведение некоторого максимального Q-определенного тора $\widetilde{T}(G')$ в G' на Z(U'). Пусть $\pi\colon \widetilde{T}(G')$. $\cdot Z(U') o \widetilde{T}(G')$ — каноническая проекция на первый множитель. Тогда π инъективно на $\varphi(T(\Gamma))$. Нетрудно видеть, что $T(\Gamma)$ и $T(\Gamma')$ — свободные абелевы группы одного ранга. Это означает, что $\pi(\varphi(T(\Gamma)))$ – арифметическая подгруппа в T(G'). Переходя в случае необходимости от $T(\Gamma)$ к ее подгруппе конечного индекса, можно считать, что $\pi(\varphi(T(\Gamma))) \subset \Gamma'$. В качестве H мы можем теперь взять $H=T(\Gamma)\cdot U(\Gamma)$. Если $h=t\cdot u$, где $h \in H, t \in T(\Gamma)$ и $u \in U(\Gamma)$, то $h \to \pi(\varphi(t)) \cdot \varphi(u)$ будет искомым нормальным изоморфизмом.

Пусть теперь Z(G)=(e) и Z(G')=(e). Если $g\in \varphi(T(\Gamma))$, то положим $g=s\cdot u$ — разложение Жордана, где u — унипотентный элемент, s — полупростой и su=us. Так как $g\in G'$ и G' — алгебраическая группа, то $u\in G'$ и $s\in G'$. Очевидно, $u\in U(G')$. Выше мы видели, что $\psi'(g)=\psi'(s)\cdot\psi'(u)$ — полупростой автоморфизм алгебры U(G'). Следовательно, $\psi'(u)$ — тождественный автоморфизм U(G') и $u\in Z(U')$. Далее, если $g'\in \varphi(T(\Gamma))$, то g'g=gg', а потому g'u=ug'. Мы доказали, что централизатор элемента u содержит арифметическую подгруппу группы G'. Из плотности этой подгруппы g' вытекает, что $u\in Z(G')$, т. е. u=e. Значит, $\varphi(T(\Gamma))$ — абелева подгруппа Γ' , состоящая из полупростых элементов. Известно $({}^{7})$, что всякая такая подгруппа содержится в максимальном Q-определенном торе T(G') группы G'. И так как $T(\Gamma)$ и $T(\Gamma')$ — свободные абелевы группы одного ранга, то $\varphi(T(\Gamma))$ — арифметическая подгрупца группы T(G'). Поэтому $\varphi(T(\Gamma)) \subseteq T(\Gamma') = \Gamma' \cap T(G')$. Теорема доказана.

Теорема 2. Если φ : $\Gamma \to \Gamma'$ — нормальный изоморфизм и центры групп G и G' не содержат элементов конечного порядка, то существует единственный Q-изоморфизм Φ : $G \to G'$, ограничение которого на Γ совпадает c φ на подгруппе конечного индекса из Γ .

Доказательство. Так как φ — нормальный изоморфизм, то существуют такие T(G) и T(G'), что $\varphi(U(\Gamma)) \subseteq U(\Gamma')$, $\varphi(T(\Gamma)) \subseteq T(\Gamma')$. А так как $T(\Gamma) \cdot U(\Gamma)$ имеет в Γ конечный индекс, то для доказательства теоремы достаточно построить Φ , совпадающий с φ на подгруппе $T(\Gamma) \cdot U(\Gamma)$. Как отмечалось при доказательстве теоремы 1, ограничение φ на $U(\Gamma) - \varphi_u$ — продолжится до Q-изоморфизма φ_u группы U(G) на группу U(G'). Отождествляя U(G) с ее алгеброй Ли, определим представление φ группы T(G) в группу автоморфизмов алгебры U(G) по следующей формуле: $\varphi(g)(u) = gug^{-1}$, где $g \in T(G)$, $u \in U(G)$. Аналогично определим представление φ' группы T(G') в группу автоморфизмов алгебры U(G').

Тогда ψ и ψ' — точные Q-гомоморфизмы. $\tilde{\varphi}_u$ индуцирует точный Q-гомоморфизм $\tilde{\psi}$ группы T(G) в группу автоморфизмов алгебры U(G'). Тогда, как простое следствие плотности $U(\Gamma)$ в U(G), получаем, что для любого

 $g \in T(G)$ справедливо равенство $\tilde{\psi}(g) = \psi'(\varphi(g))$.

 $\psi'(T(G'))$ есть Q-определенная алгебраическая группа, а из виъективности ψ' следует, что обратный к ψ' гомоморфизм $(\psi')^{-1}$ является C-рациональным гомоморфизмом группы $\psi'(T(G'))$ на группу T(G'), где C — наше универсальное поле. Из плотности $T(\Gamma)$ в T(G) и $T(\Gamma')$ в T(G') вытекает, что $\tilde{\psi}(T(G)) = \psi'(T(G'))$. Очевидно, композиция $(\psi')^{-1} \cdot \tilde{\psi}$ есть C-изоморфизм T(G) на T(G').

Пусть $g \in G$ и g = tu, где $t \in T(G)$, $u \in U(G)$. Определим теперь отображение Φ группы G на группу G' по следующему правилу: $\Phi(g) = (\psi')^{-1}(\bar{\psi}(t)) \cdot \bar{\varphi}_u(u)$. Легко видеть, что Φ есть C-рациональное отображение. Так как ограничение Φ на $T(\Gamma) \cdot U(\Gamma)$ есть гомоморфизм, то из плотности $T(\Gamma) \cdot U(\Gamma)$ в G следует, что Φ есть C-гомоморфизм G на G', совнадающий G ф а подгруппе G. Из инъективности G следует, что G есть G-изоморфизм G на G', совнадающий G ф а подгруппе G плотна G от G и G плотна G от G и G плотна G от G и учитывая, что G и G состоят из матриц G с коэффициентами из поля G заключаем, что G есть на самом деле G-изоморфизм. Единственность G вытекает из плотности G в G. Теорема доказана.

Доказательство первых двух утверждений осповной теоремы немедленно следует из теорем 1, 2. Общий случай основной теоремы легко вытекает из доказанного. Элементы конечного порядка в Z(G) и Z(G') образуют конечные центральные подгруппы K и K'. Существуют Q-рациональные гомоморфизмы φ и φ' групп G и G' соответственно такие, что $\operatorname{Ker} \varphi = K$, $\operatorname{Ker} \varphi' = K'$. Так как $\Gamma \cap K = (e)$, $\Gamma' \cap K' = (e)$, то $\varphi(G)$ и $\varphi'(G')$ содержат изоморфные арифметические подгрупны. $\varphi(G)$ и $\varphi'(G')$ удовлетворяют условиям 1 и 2, а их центры не содержат элементов конечного порядка. Следовательно, $\varphi(G)$ и $\varphi'(G')$ Q-изоморфны, чем и завершается доказательство основной теоремы.

Институт математики Академии наук БССР Поступило 1 XII 1972

Белорусский государственный университет им. В. И. Ленина Минск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Борель, Математика, 12, № 5, 34 (1968). ² М. S. Raghunathan, Ann. Math., 86, № 3, 409 (1967). ³ H. Garland, M. S. Raghunathan, Ann. Math., 92, № 3, 279 (1970). ⁴ G. D. Mostow, Actes Congr. Intern. Math., Paris, 2, 187 (1971). ⁵ G. D. Mostow, Ann. Math., 93, № 3, 409 (1971). ⁶ А. И. Мальцев, Изв. АН СССР, сер. матем., 13, № 1, 9 (1949). ⁷ В. П. Платонов, Там же, 30, № 3, 573 (1966). ⁸ В. П. Платонов, ДАН, 151, № 2, 286 (1963).