УДК 517.54 MATEMATHKA

Е. А. ПОЛЕЦКИИ

О СТИРАНИИ ОСОБЕННОСТЕЙ ПРИ КВАЗИКОНФОРМНЫХ ОТОБРАЖЕНИЯХ

(Представлено академиком М. А. Лаврентьевым 23 V 1972)

Пусть ${\bf R}^n$ — эвклидово *п*-мерное пространство, U — область в ${\bf R}^n$. Отображение $f\colon U \to \mathbf{R}^n$ называется K-квазикопформным, если оно непрерывно в U и абсолютно непрерывно на почти всех отрезках, парадлельных осям координат, его частные производные принадлежат $L_n(U')$ для любой области $\hat{U}' \subset \subset U$ и, кроме того,

$$K = \max\left(\operatorname{ess\,sup}_{x \in U} \frac{\parallel f'\left(x\right) \parallel}{\left(J_{f}\right)_{x}} \,, \quad \operatorname{ess\,sup}_{x \in U}\left(Jf\right)_{x} \| (f'\left(x\right))^{-1} \| \right) \,,$$

где f'(x) — производная f в точке x и $(Jf)_x = \det f'(x)$. Класс таких отображений обозначим через K(U). Если A — компактное подмножество в U, то Cap (U,A) — это нижняя грань $\int |\nabla u|^n dV$ по всем испрерывным функциям класса $W_n^{-1}(U)$, равным 0 на ∂U и 1 на A. Хорошо известно (1), что равенство Сар (U,A)=0 не зависит от $U,\,$ и поэтому можно просто

писать Cap A=0.

Пусть I — замкнутое подмножество U и $f \in K(U \setminus I)$; точку $x \in I$ назовем особой точкой f. Будем говорить, что f продолжается до квазиконформного отображения в точку x (т. е., что особая точка стирается), если существует отображение \tilde{f} , равное f на $U \setminus I$ и квазиконформное в окрестности точки x. В работах Б. В. Шабата (2), В. М. Миклюкова (3), Ю. В. Вяйсала, С. Рикмана и О. Мартио (4, 5) вопрос о стиранни особенностей изучался в случае, когда f — гомеоморфизм или когда СарI=0. В этой заметке будут изучены особенности квазиконформных отображений без таких ограничений и приведен ряд примеров, показывающих, как могут быть устроены множества особых точек.

Введем необходимые обозпачения. Если Γ – семейство кривых в \mathbb{R}^n , то модуль этого семейства $M(\Gamma)$ определяется как нижняя грань $\int
ho^n dv$ по всем неотрицательным борелевским функциям ρ таким, что $\int \rho \ ds \gg 1$ для любой кривой $\gamma \in \Gamma$. Мы будем обозначать через S(x,r) и B(x,r) соответственно сферу и шар с центром в точке x, а через $\Lambda_p(I)$ — меру Хаусдорфа (p-мерную) множества I. Если $f \in K(U)$ и γ_* — кривая в f(U), то поднятием у. в U называется кривая у в U такая, что $f \circ y = y$. Два под-

нятия γ_1 и γ_2 кривой γ_* существенно различны, если $\Lambda_1(\gamma_1 \cap \gamma_2) = 0$. Пусть $f \in K(U)$ и $y \in \mathbb{R}^n$. Рассмотрим спрямляемую кривую $\gamma_*(t)\colon [0,\ 1] o \mathbf{R}^n$, для которой $\lim_{t\to\infty} \gamma_*(t) = y$. Пусть существует такая спрямляемая кривая γ в U, что $f\circ\gamma=\gamma$, и $\lim_{t\to\infty}\gamma(t)=x$, где $x\in\partial U$. Тогда

кривая γ_* называется асимптотической для точки x, γ — ее асимптотиче-

ским поднятием, а y — асимптотическим значением в x.

Пример 1. Возьмем в $\mathbf{R}^3(x,y,z)$ три сферы S_1 , S_2 , S_3 с центрами в точках (0,0,0), $(0,0,\frac{2}{3})$ и $(0,0,-\frac{2}{3})$ и радиусами $(0,0,\frac{1}{3})$ и соответственно. Рассмотрим область U, лежащую между этими сферами, и возьмем симметричные ей области относительно сфер S_2 и S_3 . Мы получим две новые области U_2^1 и U_2^2 и четыре сферы $S_2^{\frac{1}{4}}$, S_2^2 , S_2^3 и S_2^4 . Возьмем области U_3^i , $1 \le i \le 4$, симметричные U_2^1 и U_2^2 относительно новых сфер, и таким же образом продолжим этот процесс неограниченно. Множество I образов точек (0, 0, 1) и (0, 0, -1) при всех симметриях является совершенным и лежит в множестве предельных точек фуксовой группы второго рода $\binom{8}{2}$, порожденной инверсиями относительно сфер S_1 , S_2 и S_3 и, как легко видеть, $\Lambda_1(I) < \infty$. Очевидно, что области U_k^i заполнят весь единичный шар B без множества I. Введем в R^3 цилиндрические координаты (x, r, φ) вдоль оси x, причем угол φ измеряется от положительного направления оси z, и зададим отображение h: $U \to R^3$ следующим образом:

$$h : U \to \mathbf{R}^3$$
 следующим образом:
$$h(x,r,\varphi) = \begin{cases} (x,r,\varphi), & -\frac{\pi}{4} \leqslant \varphi \leqslant \frac{\pi}{4}, \\ (x,r,\varphi+\pi), & \frac{3\pi}{4} \leqslant \varphi \leqslant \frac{5\pi}{4}, \\ \left(x,r,3\left(\varphi-\frac{\pi}{4}\right)+\frac{\pi}{4}\right), & \frac{\pi}{4} \leqslant \varphi \leqslant \frac{3\pi}{4}, \\ \left(x,r,3\left(\varphi-\frac{5\pi}{4}\right)+\frac{\pi}{4}\right) & \frac{5\pi}{4} \leqslant \varphi \leqslant \frac{7\pi}{4}. \end{cases}$$

Отображение h квазиконформно переводит сферы S_1 и S_2 в самих себя, сферу S_3 — на сферу S_2 , а область U — в область V, лежащую между сферами S_1 и S_2 . Пользуясь принципом симметрии, отображение h можно продолжить до квазиконформного отображения $h_1\colon B\setminus I\to H$ на множество $H=\mathbf{R}^2\setminus (0,\ 0,\ 1)$, причем все точки I являются пеустранимыми особыми точками h_1 .

Этот пример легко переносится на случай \mathbb{R}^n (n > 3). Можно построить отображение h_1' , чье дополнение образа E имеет ненулевую емкость, хотя $\Lambda_1(I) = 0$ — это опровергает существующую гипотезу. Отметим, что образ любой окрестности $B(x, r), x \in I$, всюду плотен в H.

Пример 2. Приклеим к S_4 сверху шапочку и продолжим отображение h_1' в эту шапочку, так чтобы ее образ пересекал E; мы получим отображение h_2 . Емкость дополнения образа B(x, r), $x \in I$, в образе всей области при этом отображении больше нуля.

Пример 3. Совершим инверсию i относительно единичной сферы с центром в точке (0, 0, 1). При этом область V из примера 1 перейдет в область V', лежащую между параллельными плоскостями. Пусть h — отображение из примера 1: продолжая $i \circ h$ по симметрии, получим отображение $h_2 \colon B \setminus I \to \mathbf{R}^s$. Образ h_2 есть всё \mathbf{R}^s , и, более того, образ B(x, r) тоже есть всё \mathbf{R}^s .

Пример 4. При помощи композиции первого примера и примера, описанного в статье В. А. Зорича (°), можно получить отображение, для которого все точки некоторого отрезка являются неустранимыми и, более того, точками накопления полюсов первого порядка.

Основным инструментом при нашем исследовании служит

Теорема 1. Пусть Γ — семейство кривых в U, $f \in K(U)$ и Γ_* — образ Γ , причем любая кривая $\gamma_* \in \Gamma_*$ имеет в Γ по крайней мере m существенно различных поднятий. Тогда

$$M(\Gamma_*) \leqslant \frac{K}{m} M(\Gamma).$$

Это неравенство позволяет получать достаточно хорошие оценки для модулей семейств кривых и является, в известном смысле, точным. В доказательстве этой теоремы используются методы из (7).

Пусть $f: U \setminus I \to R^n$, где I— замкнутое подмножество U, — K-квазиконформное отображение. Если A— замкнутое множество в $U \setminus I$, а $I_0 \subseteq I$, то обозначим через $\Gamma_{\bullet}(A, I_0)$ семейство кривых в $f(U \setminus I)$, которые допускают асимптотические поднятия, пересекающие A и I_0 . Используя результаты (6), можно доказать следующую теорему.

Теорема 2. Если $f \in K(U \setminus I)$, $\Gamma_{\bullet}(I_0)$ — семейство асимптотических кривых для точек $x \in I_0$ и Cap A > 0. Тогда $M(\Gamma_{\bullet}(I_0)) = 0$ в том и только том случае, если $M(\Gamma_{\bullet}(A, I_0)) = 0$.

Эта теорема уточняет результат Ю. Г. Решетняка о независимости попятия емкости 0 от области и, кроме того, переносит его в пространство образа.

T е о р е м а 3. Пусть $f \in K(U \setminus I)$, где I - замкнутое подмножество U, $\dim I \leq n-2$, и Γ_{\bullet} — семейство кривых, асимптотических для точек $x \in I$. $Ecnu\ M(\Gamma_*)=0\ u\ {\rm Cap}\ ({\bf R}^n\setminus f(U\ I))>0,\ ro\ f\ npodonжается\ do\ квази$ конформного отображения $\tilde{f}: U \to \mathbb{R}^n$ и $\operatorname{Cap} I = 0$.

Подобный результат доказан в работах (3,5) при условии Cap I=0вместо $M(\Gamma_*)=0$. Теоремы 1 и 2 показывают, что из первого условия следует второе. В примерах 3 и 4 $M(\Gamma_*)=0$, а Сар $I\neq 0$. Поэтому теорема 3 сильнее указанного результата.

Используя теоремы 1, 2 и 3, мы доказываем основной результат. Введем сначала дополнительные обозначения. Если $x \in I$, то число i(x, r)равно верхней грани числа прообразов в $B(x, r) \setminus I$ точек $y \in \mathbb{R}^n$, а i(x) = $=\lim i(x,r)$. Пусть $I_k=\{x\in I\colon i(x)\geqslant k\}$. Очевидно, что I_k замкнуто в I_k

Tеорема 4. Пусть f \in $K(U\setminus I)$ и $\Lambda_{n-1}(I)=0$. Тогда для любой точки $x \in I$ имеют место три возможности: 1) f продолжается квазиконформно в x; 2) при любом r емкость дополнения образа B(x, r) в образе $U \setminus I$ равна нулю; 3) при любом г модуль семейства кривых, асимптотических для $B(x, r) \cap I_{\infty}$ и ведущих в асимптотические значения из множества $f(B(x,r) \setminus I_{\infty})$, больше нуля.

Эта теорема усиливает все известные результаты о стирании особенностей. Она показывает, что если отображение достаточно хорошее, т. е. не имеет место случай 3, то особенность либо устраняется, либо для нее справедлив аналог теоремы Сохоцкого. Из примера 2 видно, что случай 3 реализуется. Заметим, что мы не требуем условия $M(\Gamma_*) = 0$ и в примере 1 осуществляется вторая возможность теоремы.

Интерес к изучению множества особых точек, у которого $\Lambda_{n-1}(I) = 0$, вызван тем, что такое множество является нуль-множеством (19), кроме того, как легко показать, при квазиконформных отображениях образ его тоже нуль-множество.

Спедствие. Eсли в условиях теоремы 4 для кажdой точки $x \in I$ найдется r такое, что модуль асимптотических кривых для $B(x, r) \cap I_{\infty}$, ведущих в асимптотические значения из $f(B(x, r) \setminus I_{\infty})$, равен 0, то множество точе**к** разрыва замкнуто в U.

Пусть B_t — множество точек ветвления отображения f. Следует заметить, что во всех разобранных примерах любая неустранимая особая точка явияется предельной для B_f и, более того, фундаментальная группа $\pi_i(B(x,r)\setminus (B_i\cup I))$ имеет бесконечное число образующих. Думается, что это условие необходимо для существования особых точек. Такая гипотеза полтверждается следующей теоремой, которая показывает, что образ в окрестности асимптотического значения для неустранимой особой точки устроен достаточно плохо.

T е о р е ма 5. Пусть $f \in K(U \setminus I)$, $\Lambda_{n-1}(I) = 0$, а $\gamma_* - acumn \tau$ отическая кривая для неустранимой особой точки $x \in I$, идущая в $y \in \mathbb{R}^n$. Тогда при любом r>0 найдется точка $y'\in B(y,r)$, имеющая бесконечное число прообразов в связной компоненте $f^{-1}(B(y,r))$, которая пересекается с асимп-

тотическим поднятием γ кривой γ_* , идущей в x.

Автор приносит благодарность Б. В. Шабату за внимание к работе.

Московский государственный университет им. М. В. Ломоносова

Поступило 17 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

цитированная литература.

¹ Ю. Г. Решетняк, Сибирск. матем. журн., 8, № 3, 629 (1967).
² Б. В. Шабат, ДАН, 132, № 5, 1045 (1960).
³ В. М. Миклюков, ДАН, 188, № 3, 525 (1969).
⁴ J. Väisälä, J. Math. and Mech., 19, № 1, 49 (1969).
⁵ О. Martio, S. Rickman, J. Väisälä, Ann. Acad. Sci. Fenn., Ser. AI, № 465, 12 (1971).
⁶ В. В. Асеев, ДАН, 200, № 3, 513 (1971).
⁷ Е. А. Полецкий, Матем. сборп., 83, в. 2, 261 (1970).
⁸ Л. Форд, Автоморфные функции, 1936.
⁹ В. А. Зорич, Матем. сборп., 74, в. 3, 431 (1967).
¹⁰ J. Väisälä, Ann. Acad. Sci. Fenn., Ser. AI, № 322, 4 (1962).