MATEMATUKA

В. А. ЯКУБОВИЧ

МИНИМИЗАЦИЯ КВАДРАТИЧНЫХ ФУНКЦИОНАЛОВ ПРИ КВАДРАТИЧНЫХ ОГРАНИЧЕНИЯХ И НЕОБХОДИМОСТЬ ЧАСТОТНОГО УСЛОВИЯ В КВАДРАТИЧНОМ КРИТЕРИИ АБСОЛЮТНОЙ УСТОЙЧИВОСТИ НЕЛИНЕЙНЫХ СИСТЕМ УПРАВЛЕНИЯ

(Представлено академиком В. И. Смирновым 26 V 1972)

 1° . Пусть $3 \equiv \{z\}$ — вещественное линейное пространство. Как обычно, квадратичной формой будем называть фунцию A(z, z), где $A(z_1, z_2)$ — билинейный функционал на 3, и квадратичным функционалом — вещественную функцию $\mathfrak{F}(z)$ вида $\mathfrak{F}(z) = A(z, z) + a(z) + \alpha$, где A(z, z) — квадратичная форма, a(z) — линейный функционал, α — вещественное число.

ционалы на $\Im u \ \exists z_0 \in \Im, \&(z_0) > 0.$

Следующие утверждения равносильны: а) $\Re(z) \ge 0$ на множестве, где $\Re(z) \ge 0$, б) существует число $\tau \ge 0$ такое, что $\Re(z) - \tau \Re(z) \ge 0$ $\forall z \in \Im$.

В теоремах 2, 3 встречаются выражения $\sup \varphi(\tau)$, $\inf \varphi(\tau)$, τ де $\varphi(\tau)$ — вещественная функция, принимающая также, возможно, значения $+\infty$ или $-\infty$. Эти выражения попимаются так. Если $\exists \tau_0, \varphi(\tau_0) = +\infty$, то $\sup \varphi(\tau) = +\infty$; если $\varphi(\tau) \neq +\infty$ $\forall \tau$, то $\sup \varphi(\tau)$ определяется обычным образом; если $\varphi(\tau) \equiv -\infty$, то $\sup \varphi(\tau) = -\infty$. Аналогично определяется $\inf \varphi(\tau)$.

Tеорема 2. Пусть $\mathfrak{F}(z)$, $\mathfrak{G}(z)$ — квадратичные функционалы на $\mathfrak{F}(z)$

 $\exists z_0, \mathfrak{G}(z_0) > 0. To z \partial a$

$$\inf_{\mathfrak{G}(z)\geqslant 0}\mathfrak{F}(z) = \sup_{\tau\geqslant 0}\inf_{\mathfrak{F}}\left[\mathfrak{F}(z) - \tau\mathfrak{G}(z)\right].$$
(1)

Теорема 3. Пусть $\mathfrak{F}(z)$, $\mathfrak{G}(z)$, $\mathfrak{F}(z) - \kappa \varepsilon a \partial p$ атичные функционалы на 3 такие, что 1) $\exists z_0 \in \mathfrak{F}(z) = \mathfrak{F}(z_0) > 0$, II) $\mathfrak{F}(z) \geq 0$ $\forall z \in \mathfrak{F}(z_0) = 0$, $\mathfrak{F}(z) \geq 0$ пусто, либо $\mathfrak{F}(z) \geq 0$ при $\mathfrak{F}(z) = 0$, $\mathfrak{F}(z) \geq 0$. Тогда

$$\inf_{\substack{(\mathfrak{G}(z) \geqslant 0 \\ \mathfrak{H}(z) \equiv 0}} \frac{\mathfrak{F}(z)}{\mathfrak{H}(z)} = \sup_{\mathbf{\tau} \geqslant 0} \inf_{\mathfrak{H}(z) \neq 0} \frac{\mathfrak{F}(z) - \mathbf{\tau}\mathfrak{G}(z)}{\mathfrak{H}(z)}.$$
(2)

Теоремы 1, 3 для случая, когда 3—эвклидово пространство, $\Re(z)$,

 $\mathfrak{G}(z)$ — квадратичные формы и $\mathfrak{H}(z)=|z|^2$, установлен в (1) *.

Доказательство теоремы 1. Очевидно, что из б) следует а). Покажем, что из а) следует б). Пусть вначале $\mathfrak{F}(z)$, $\mathfrak{G}(z)$ — квадратичные формы. Используя теорему Дайнса (²) (см. также (¹)), получаем, что при отображении $\eta_1 = \mathfrak{F}(z)$, $\eta_2 = \mathfrak{G}(z)$ в плоскость $R^2 = \{\eta\}$, $\eta = \|\eta_1, \eta_2\|$, образ P пространства $\mathfrak{F}(z) = \{\eta\}$, $\mathfrak{F}($

^{*} В формулировке теоремы 1 в (1) автором допущена ошибка: слова «форма (Gx, x) не является отрицательно определенной» должны быть заменены словами «форма (Gx, x) не является неположительной». Имеются опечатки в доказательстве.

Пусть $\mathfrak{F}(z)$, $\mathfrak{G}(z)$ — квадратичные функционалы и выполнено а). Без ограничения общности будем считать, что в условии теоремы $z_0 = 0$ (иначе мы положили бы $\mathfrak{F}_1(z)=\mathfrak{F}(z+z_0),\ \mathfrak{G}_1(z)=\mathfrak{G}(z+z_0))$. Пусть $\mathfrak{Z}^0=\mathfrak{Z}\times$ $\times R^1$, $R^1 = \{\xi\}$, $\mathfrak{G}(z) = A(z, z) + a(z) + \alpha$, где $A(z_1, z_2)$ – билинейный, a(z) — линейный функционалы. Положим $\mathfrak{G}^{0}(z,\zeta)=A(z,z)+\zeta a(z)+\alpha \zeta^{2}.$ Аналогично по $\mathfrak{F}(z)$ определим квадратичную форму $\mathfrak{F}^{0}(z,\zeta)$ на \mathfrak{F}^{0} . Покажем, что $\mathfrak{F}^{0}(z,\zeta)\geqslant 0$ при $\mathfrak{G}^{0}(z,\zeta)\geqslant 0$. Для $\zeta\neq 0$ это следует из а), так как $\mathfrak{F}^{0}(z,\zeta)=\xi^{2}\mathfrak{F}(\zeta^{-1}z),\ \mathfrak{G}^{0}(z,\zeta)=\xi^{2}\mathfrak{G}(\zeta^{-1}z)$ при $\zeta\neq 0$. Пусть $\mathfrak{G}^{0}(z,0)\geqslant 0$ для некоторого Z. Так как $\mathfrak{G}(0) = \alpha \ge 0$, то $\mathfrak{G}(\eta z) \ge 0$ при достаточно больших $|\eta|$ (определенного знака, если A(z,z)=0, и для любых η , если A(z, z) = 0, a(z) = 0). Из а) имеем $\mathfrak{F}(\eta z) \ge 0, \, \mathfrak{F}^0(z, 0) = \lim \eta^{-2} \mathfrak{F}(\eta z) \ge 0$ при $|\eta| \to \infty$ и $\eta a(z) < 0$, если A(z,z) = 0, $a(z) \ne 0$. Итак, $\mathfrak{F}^0(z,\zeta) \le 0$ при $\mathfrak{G}^{\circ}(z,\zeta) \leq 0$. По доказанному $\exists \tau \geq 0$ $\mathfrak{F}^{\circ}(z,\zeta) - \tau \mathfrak{G}^{\circ}(z,\zeta) \geq 0$ $\forall z \in \mathbb{S}$, $\zeta \in \mathbb{R}^1$. Для $\zeta = 1$ получаем б). Теорема 1 доказана.

Теорема 2 следует из теоремы 3 для $\mathfrak{H}(z) \equiv 1$.

Доказательство теоремы 3. Обозначим Inf (...) слева в первом соотношении (2) через I_1 и Inf (...) справа — через $I_2(\tau)$. Для любого $\tau \ge 0$ имеем $\mathfrak{F}/\mathfrak{H} \geqslant (\mathfrak{F} - \tau \mathfrak{G})/\mathfrak{H}$ при $\mathfrak{G} \geqslant 0$, $\mathfrak{H} \neq 0$. Поэтому, если $I_2(\tau) \neq -\infty$ кажем справедливость обратного неравенства. Если $I_1 = -\infty$, то $I_2(\tau) = -\infty$ $\forall \tau \geqslant 0$ и выполнено первое соотношение (2). Пусть $I_1 > -\infty$. Тогда $\mathfrak{F}/\mathfrak{G} \ge I_1$, $\mathfrak{F}-I_1\mathfrak{G} \ge 0$ при $\mathfrak{G} \ge 0$, $\mathfrak{G} \ne 0$ в силу II). Из III) имеем $\mathfrak{F}-I_1\mathfrak{G}\geqslant 0$ при $\mathfrak{G}\geqslant 0$, $\mathfrak{G}=0$. Следовательно, $\mathfrak{F}-I_1\mathfrak{G}\geqslant 0$ при $\mathfrak{G}\geqslant 0$. По теореме 1 $\mathfrak{F}-I_1\mathfrak{G}-\tau_0\mathfrak{G}\geqslant 0$ $\forall z,\forall \tau_0\leqslant 0$. Из II) ($\mathfrak{F}-\tau_0\mathfrak{G}$)/ $\mathfrak{G}\geqslant I_1$ при $\mathfrak{G}\not=0$, т. е. $I_2(\tau_0)\geqslant I_1$, $\sup_{\tau\geqslant 0}I_2(\tau)\geqslant I_1$, а значит, $I_2(\tau_0)=I_2(\tau)$ $= \sup_{t \in I_2} I_2(\tau) = I_i$, т. е. выполнено первое соотношение (2). Так как $\operatorname{Sup}\mathfrak{M}=-\operatorname{Inf}(-\mathfrak{M})$, то выполнено второе соотношение (2). Теорема 3 доказана.

Замечание. Теоремы 1, 2, 3 справедливы, очевидно, и для комплексного линейного пространства $\mathfrak{F}(\mathfrak{p})$ (при этом $\mathfrak{F}(z_1, z_2)$ — эрмитова форма). Теорема 1 для комплексного случая, когда $\mathfrak{F}(z)$, $\mathfrak{G}(z)$ — эрмитовы формы, установлена ранее в (3). Доказательство (3) существенно использует комплексность пространства.

 2° . Перейдем к квадратичному критерию абсолютной устойчивости.

Рассмотрим систему

$$dx / dt = Ax + b\xi, \quad \eta = c^*x + \alpha\xi. \tag{3}$$

В (3) $A,\ b,\ c,\ \alpha,\ x,\ \xi,\ \eta$ — матрицы и векторы, соответственно, порядков $N \times N$, $N \times n$, $N \times k$, $k \times n$, N, n, k, матрицы A, b, c, α постоянны, |c| + 1 $+ |\alpha| \neq 0, |\xi(t)| \in L_2(0,T) \quad \forall T: 0 < T < \infty.$

Пусть $G(x,\xi)$ — эрмитова форма x,ξ и \mathfrak{M}_{G} — множество пар функций $\{x(t), \xi(t)\}$, удовлетворяющих первому соотношению (3) и таких, что для каждой пары существует последовательность $t_n \to \infty$ и число $\gamma \ge 0$ такие, OTP

$$\int_{0}^{t_{n}} G\left[x\left(t\right), \xi\left(t\right)\right] dt \geqslant -\gamma. \tag{4}$$

 $\int\limits_0^{t_n}G\left[x\left(t\right),\,\xi\left(t\right)\right]\,dt\geqslant -\gamma. \tag{4}$ Введем обозначение: $\Im\left\{\phi\left(t\right)\right\}=\int\limits_0^\infty\phi\left(t\right)dt$. Будем различать вещественный случай, когда все величины в (3) и коэффициенты формы $G(x, \xi)$ вещественны, и комплексный случай, когда они, вообще, комплексны. Множество вещественных $\{x,\ \xi\} \in \mathfrak{M}_{\scriptscriptstyle{G}}$ обозначим через $\mathfrak{M}_{\scriptscriptstyle{G}}{}^{\circ}$. Система (3) называется абсолютно устойчивой по выходу п в классе \mathfrak{M}_G (в классе \mathfrak{M}_G°), если для любых $\{x, \xi\} \in \mathfrak{M}_G(\{x, \xi\} \in \mathfrak{M}_G^{\circ})$ величина $\|\eta\|^2 = \mathfrak{F}\{|\eta|^2\}$ конечна и $\|\eta\|^2 \leqslant C_1|x(0)|^2 + C_2\gamma$, где $C_1 > 0$,

 $C_2 > 0$ — постоянные, зависящие лишь от A, b, c и коэффициентов формы

 $G(x, \xi)$. Через I ниже обозначается единичная $N \times N$ матрида:

T е о р е м а 4. Пусть имеет место вещественный случай u I) пара (A, b)управляема, II) для любого $a \in R^N$ существует пара $\{x^0(t), \xi^0(t)\} \in \mathfrak{M}_c^0$ с числом $\gamma = \gamma(a)$ в (4), удовлетворяющим условию $\inf \gamma(\lambda a) / \lambda^2 = 0$ и такая, что $x^0(0) = a$, а также $|x^0(t_n)| \to 0$ при $t_n \to \infty$, где t_n – последователь-

ность в (4). Для абсолютной устойчивости системы (3) в классе \mathfrak{M}_{G}° по выходу η необходимо и достаточно, чтобы для некоторого $\delta > 0$ было выполнено

$$G[A_{i\omega}^{-1}b\xi,\xi] \leqslant -\delta |\widetilde{\eta}|^2, \quad \widetilde{\eta} = [c^*A_{i\omega}^{-1}b + \alpha]\xi, \quad A_{i\omega} = i\omega I - A,$$
 (5)

при всех $\xi \in C^n$ и всех $\omega \in R^1$ таких, что $\det A_{i\omega} \neq 0$. В комплексном случае справедливо аналогичное утверждение с заменой \mathfrak{M}_{G}^{0} на \mathfrak{M}_{G} .

Замечание. Условие II), очевидно, выполнено, если существует $N \times$ \times n матрица q такая, что $Q=A+bq^*$ —гурвицева матрица и $G(x,q^*x)\geqslant 0$ $\forall x\in C^N$. В этом случае $x^0(t)=\exp{(Qt)}a,\,\xi^0(t)=q^*x^0(t)$.

 Π е м м а. Π усть пара (A, b) управляема, $F(x, \xi)$ — эрмитова форма векторов $x \in C^n$, $\xi \in C^n$, $\Re[\xi(t)] = \Im\{F(x(t), \xi(t))\}$ — функционал, определенный для $\xi(t) \in L_2^{(n)}$ (0, ∞) (вещественных в вещественном случае) таких, что для решения x(t) уравнения $dx/dt = Ax + b\xi(t)$, x(0) = a, выполнено $x(t) \in L_2^N(0, \infty)$. Ecau $\exists \omega_0 \in R_0^1$, $\xi_0 \in C^N$ $\rho_0 = F(A_{i\omega_0}^{-1}b\xi_0, \xi_0) > 0$, ro $\sup \mathfrak{F}[\xi(t)] = +\infty$ как в вещественном, так и в комплексном случаях.

Доказательство леммы. В силу управляемости (A, b) в результате подходящей замены $\xi = \tau^* x + \xi'$ получим, что A — гурвицева матрица. Пусть Z — линейное пространство комплексных пар $z = \{\xi, y\}, \xi \in L_{\ell^2}$ (0, ∞), $y \in L_2$ (0, ∞), $dy / dt = Ay + b\xi$, y(0) = 0 и Z^0 – аналогичное множество вещественных пар в вещественном случае. Так как $x(t)=\exp(At)a+y(t)$, то $\mathfrak{F}[\xi]$ — квадратичный функционал на Z (на Z^0) с квадратичной формой $\mathfrak{F}_0[\xi] = \mathfrak{I}\{F[y(t),\ \xi(t)]\}$. Достаточно найти пару $\{\xi^{(1)}, y^{(1)}\} \in Z(\subseteq Z^0)$ такую, что $\mathfrak{F}_0(\xi^{(1)}) > 0$. (Тогда $\mathfrak{F}(\mu \xi^{(1)}) \to +\infty$ при $\mu \to \infty$.)

- а) Комплексный случай. Используя управляемость (A, b), определим $\xi_0(t)$, $y_0(t)$, $0 \le t \le 1$, так, что $y_0(0) = 0$, $y_0(1) = A^{-1}_{\omega_0}b\xi_0$, $dy/dt = Ay + b\xi$. Пусть T > 1. Положим $\xi^{(1)} = \xi_0(t)$, $y^{(1)} = y_0(t)$ на [0, 1], $\xi^{(1)}=e^{i\omega_0t}\xi_0,\;y^{(1)}=e^{i\omega_0t}A_i\overline{\omega_0}\;b\xi_0$ на $[1,\;T],\;\xi^{(1)}=\xi_0(T+1+t),\;y^{(1)}=y_0(T+1+t)$ на $[T,\;T+1]$ и $\xi^{(1)}\equiv0,\;y^{(1)}\equiv0$ на $[T+1,\;\infty)$. Очевидно, $\{\xi^{(i)},y^{(i)}\}\in Z$ и $\mathfrak{F}_0[\xi^{(i)}]=2\int\limits_{\Sigma}F[y^{(i)},\ \xi^{(i)}]dt+(T-1)
 ho_0>0$ при достаточно бельшом T.
- б) Вещественный случай. Положим $\xi^{(2)}=\operatorname{Re}\,\xi^{(1)}(t),\ y^{(2)}==\operatorname{Re}\,y^{(1)}(t),\ \xi^{(3)}=\operatorname{Im}\,\xi^{(1)}(t),\ y^{(3)}=\operatorname{Im}\,y^{(1)}(t).$ Очевидно, $\{\xi^{(2)},\ y^{(2)}\}\in Z^0,\ \{\xi^{(3)},\ y^{(3)}\}\in Z^0.$ Для любой эрмитовой формы K(z), где $z\in C^{N+n}$, с вещественной матрицей коэффициентов выполнено $K(t) = K(\operatorname{Re} z) + K(\operatorname{Im} z)$. Поэтому $\mathfrak{F}(\hat{\xi}^{(1)}) = \mathfrak{F}(\xi^{(2)}) + \mathfrak{F}(\xi^{(3)})$. Так как $\mathfrak{F}(\xi^{(1)}) > 0$, то либо $\mathfrak{F}(\xi^{(2)}) > 0$ > 0, либо $\mathfrak{F}(\xi^{(3)}) > 0$. В первом случае искомой парой будет $\{\xi^{(2)}, y^{(2)}\}$, во втором — $\{\xi^{(3)}, y^{(3)}\}$. Лемма доказана.

Доказательство теоремы 4. Достаточность. Используя (5) и основную лемму (4) (приложение) (или (5), § 9, 3), получим, что существует эрмитова форма $V(x)=x^*Hx$, для которой $dV/dt+G(x,\xi) \le$ $\leq -\delta |\eta|^2$ $\forall x \in C^N$, $\xi \in C^N$, где $dV/dt = 2\operatorname{Re} x^*H(Ax+b\xi)$. Аналогично доказательству теоремы 2 из (6) получим из II), что $V(x) = x^* H x \geqslant 0$ $\forall x$.

Для $\{x, \xi\} \in \mathfrak{M}^0$ ($\{x, \xi\} \in \mathfrak{M}$), используя (4), получим $|\eta|^2 dt \leq$

 $\leq V[x(0)] - V[x(t_n)] + \gamma \leq V[x(0)] + \gamma$. Отсюда $\|\eta\|^2 < \infty$, $\|\eta\|^2 \leq \infty$

 $\leq C_1 |x(0)|^2 + C_2 \gamma$.

Необходимость. Пусть б) не выполнено. Если $\|\eta\| = \infty$ для любых $\{x, \xi\} \in \mathfrak{M}_G$ ($\in \mathfrak{M}_G^o$), то в классе \mathfrak{M}_G (\mathfrak{M}_G^o) абсолютной устойчивости нет. Рассмотрим поэтому вторую возможность, когда $\|\eta\| < \infty$ для некоторой нары $\{x, \xi\} \in \mathfrak{M}_G$ ($\in \mathfrak{M}_G^o$). Пусть γ — соответствующее число в (4) и x(0) = a. Рассмотрим множество всех пар $\{x, \xi\} \in \mathfrak{M}_G$ ($\in \mathfrak{M}_G^o$) с этими γ и a, для которых $\|\eta\| < \infty$, и покажем, что для этого множества $\sup \|\eta\|^2 = \infty$, т. е. что и в этом случае в классе \mathfrak{M}_G (\mathfrak{M}_G^o) абсолютной устойчивости нет. Используя управляемость (A, b), придем к случаю, когда A — гурвицева матрица. Пусть Z (в вещественном случае Z^o) — множество пар $z = \{\xi, y\}$, определенное при доказательстве леммы. Очевидно, $\|\eta\|^2 = \mathfrak{F}(z)$ и $\mathfrak{G}(z) = \gamma + \mathfrak{F}\{G(x, \xi)\}$ — квадратичные функционалы на линейном пространстве Z (Z^o). Не ограничивая общности, число γ можно считать сколь угодно большим (см. (4)). Поэтому $\exists z^o \in Z$ ($\exists z^o \in Z^o$) $\mathfrak{G}(z^o) > 0$. По теореме 2

$$\sup \|\eta\|^{2} = \inf_{\tau \geqslant 0} (\sup \{\Im \{|\eta|^{2} + \tau G(x, \xi)\}\} + \tau \gamma), \tag{6}$$

где Sup справа берется по всевозможным $z = \{\xi, y\} \in Z \ (\in Z^0)$. При этом x(t) удовлетворяет первому соотношению (3), x(0) = a и $y = x(t) - \exp(At)a$. Так как не выполнено (5), то $\forall \delta > 0$ $\exists \omega_0 \in R^1, \ \xi_0 \in C^n$

$$ho_0 = |\,\widetilde{\eta}\,|^2 + \delta^{-1} G\,(A_{i\omega_0}^{-1} b \xi_0, \xi_0) \! > \! 0.$$

Применим лемму для определения $\sup [\dots]$ в правой части (6). Имеем $F(x, \xi) = |\eta|^2 + \tau G(x, \xi)$, $\eta = c^*x + \alpha \xi$. При $\tau \neq 0$ для $\tau^{-1} = \delta$ имеем $F(A_{i\omega_0}^{-1}b\xi_0, \xi_0) = \rho_0 > 0$. По лемме в (6) справа $\sup [\dots] = \infty$. Пусть $\tau = 0$. В силу управляемости (A, b) $\exists \omega_0 \in R^1$, $\xi_0 \in C^n$ такие, что $\widetilde{\eta} \neq 0$, $\tau = 0$. В силу управляемости (A, b) $\exists \omega_0 \in R^1$, $\xi_0 \in C^n$ такие, что $\widetilde{\eta} \neq 0$, $\varepsilon = 0$ 0. По лемме в (6) справа $\sup [\dots] = +\infty$ и при $\varepsilon = 0$. Следовательно (в соответствии с определением Inf для этого случая), из (6) имеем $\sup \|\eta\|^2 = \infty$. Мы показали, что при нарушении (6) оценка $\|\eta\|^2 \leqslant C_1 \|x(0)\|^2 + C_2 \gamma$ не выполняется. Теорема 4 доказана.

Замечание. Можно показать, что при нарушении условия (5)

Sup $\int_0^t |\eta|^2 dt = \infty$, где верхняя грань берется по всем t_n и всем $\{x,\xi\} \in \mathfrak{M}_G$

(в вещественном случае по всем $\{x,\xi\} \in \mathfrak{M}_{\sigma}^{\circ}$) с фиксированным начальным вектором x(0) = a и числом γ в (4).

Ленипградский государственный университет им. А. А. Жданова

Поступило 16 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Якубович, Вести. Ленингр. унив., № 1 (1971). ² L. Dines, Buli. Am. Math. Soc., 47, 494 (1941). ³ М. Г. Крейн, Ю. Л. Шмульян, Математические исследования, № 1, 1, 131 (1966). ⁴ В. А. Якубович, Автоматика и телемехацика. № 12, 5 (1970). ⁵ В. М. Попов, Гиперустойчивость автоматических систем, «Наука», 1970. ⁶ В. А. Якубович, ДАН, 209, № 2 (1973).