УДК 547.835 + 541.637

ХИМИЯ

Академик И. Я. ПОСТОВСКИЙ, О. Н. ЧУПАХИН, В. Л. РУСИНОВ

НОВЫЙ СЛУЧАЙ ДЕЗАЛКИЛИРОВАНИЯ СТЕРИЧЕСКИ ЗАТРУДНЕННЫХ АРИЛАМИНОВ

Продолжая исследование реакции аминоарилирования акридинов в присутствии серы (1, 2) мы обпаружили, что ряд стерически затрудненных диалкил-о-толуидинов при атаке акридиниевым катионом подвергается расщеплению по диалкиламиногруппе.

При этом в отличие от незатрудненных ариламинов (1) образование продуктов конденсации сопровождается выделением меркаптанов

 $a-R_1=R_2=CH_3;\; \delta-R_1=R_2=C_2H_5;\; \mathbf{b}-R_1=CH_3,\; R_2=C_2H_5.$

Например, в результате реакции N,N-диметил-o-толуидина Ha с гидрохлоридом акридина I образуется не 9-(4-диметиламино-3-метилфенил)-акридин, как было указано (2), а продукт дезалкилирования 9-(4-метиламино-3-метилфенил)-акридин IIIа. В аналогичной реакции N,N-диртило-толуидин Hб, взаимодействуя с акридином, дезэтилируется. Этильная группа в Hб не переходит в бензольное кольцо, как, папример, при термическом разложении Hб (3), а элиминируется, превращаясь в C_2H_5SH . Последний поглощался CCl_4 и обнаружен в нем с помощью и.-к спектроскении (характеристические антисимметричные колебания $\mathbf{v}_{SH} = 2603 \, \mathrm{cm}^{-1}$). При добавлении к этому раствору спиртового раствора сулемы выпадает белый осадок меркаптида ртути.

Если в диалкиламиногруппе содержится метил и этил, то при введении акридинового остатка такой ариламин отщепляет этильную группу (случай IIв).

О паличии вторичной аминогруппы в продуктах реакции IIIа, б говорят следующие данные. В и.-к. спектрах этих соединений обнаружена характерная для валентных колебаний N-H-связи полоса поглощения в области $3460~{\rm cm^{-1}}$. III вступают в характерную для вторичных аминов конденсацию с нафтилизоцианатом с образованием соответствующих производных мочевины V. Кроме того, соединения III идентичны по и.-к. спектрам, значениям R_f и не дают температурной дисперсии в пробе смешения с арилакридинами заведомого строения, полученными из моно-алкил-о-толуидинов IVa, б. В то же время III отличаются по всем этим данным от N_f -диалкиламинотолилакридинов, полученных по Ачесону (°) из акридона и диалкил-о-толуидинов в присутствии хлорокиси фосфора.

Элиминирование алкильного остатка у стерически затрудненных ариламинов происходит в переходном состоянии, так как нагревание ариламинов с серой при температуре реакции не вызывает никаких превращений. Скорее всего, такое переходное состояние близко по своей структуре к VI, в котором копланарное расположение диалкиламиногруппы и фе-

Исходный ариламин	Продукт реакции	Т. пл., °С (раствори- тель)	R_t	Бр утто - форм у ла	Найдено, %			Вычислено, %			N—H,	Выход,
					С	Н	N	C	н	N	CM-1	%
											1	
Ha	IIIa	285—287	0,50	$C_{21}H_{18}N_2$	84,8	6,3	9,0	84,5	6,1	9,4	3463	55
Пб	Шб	(ксилол) 250	0,54	$C_{22}H_{20}N_2$	84,7	6,3	9,5	84,6	6,4	9,0	3350	30
Пв	HIIa	(ксилол) 288—287 (ксилол)	0,50	C ₂₁ H ₁₈ N ₂	84,6	6,0	9,3	84,5	6,1	9,4	3463	30
IVa	IIIa*	285—287		$C_{21}H_{18}N_2$	_	_		_			3463	57
IVő	III6**	(ксилол) 250 (ксилол)	0,54	$C_{22}H_{20}N_2$	84,3	6,5	9,1	84,6	6,4	9,0	3350	70

^{*} Не дает температурной депрессии в пробе смешения с IIIа, полученным из IIа. ** Не дает температурной депрессии в пробе смешения с III6, полученным из II6.

нильного кольца может быть реализовано лишь при отщеплении одного из алкильных остатков.

Последний отщепляется, вероятно, в виде карбокатиона, который, взаимодействуя с образующимся сульфгидрильным ионом, дает меркаптан.

И.-к. спектры спяты на приборе UR-20 в хлороформе и вазелиновом масле. Хроматографические анализы проведены на приборе «Вырухром» А-1 с пламенно-ионизационным детектором, газ-носитель гелий, колонка 4×2000 мм, 20% полиэтиленгликольадипината на целите-545, температура 180° . Тонкослойная хроматография проводилась на окиси алюминия второй степени активности, элюент — хлороформ. IIа — в получены по (°). Отсутствие первичных и вторичных аминов в исходных IIа—в подтверждено данными г.ж.х. и и.-к спектроскопии. IVa, б получены по (⁷).

Реакция гидрохлорида акридина с ариламинами проводилась по методике, описанной в (2). Характеристики полученных соединений приведены в табл. 1. Отходящие газы осущались P_2O_5 и поглощались CCl_4 , охлажденным до 0° .

1-4-(9-акридия) -2 - метил фенил-1-метил - 2 - нафтил мочевина (V). К раствору 0,3 г (0,001 моля) IIIа в спирте добавляют 1,7 г (0,01 моля) пафтилизоцианата. Выпавший V фильтруют и кристаллизуют из смеси ДМФА — спирт 2:1. Выход 0,39 г (83%). Т. пл. 300°.

$$m H$$
айдено 0 0: N 8,9 $m C_{32}H_{25}N_3O$. Вычислено 0 0: N 9,0

Уральский политехнический институт им. С. М. Кирова Свердловск

Поступило 24 VII 1972

цитированная литература

¹ В. А. Трофимов, О. Н. Чунахин и др., Хим. гетероциклич. соед., № 1, 112 (1971). ² В. Л. Русинов, О. Н. Чунахин и др., там же, № 2, 216 (1972). ³ Н. Н. Ворож цов, Основы синтеза промежуточных продуктов и красителей, 1950. ⁴ Л. Беллами, Инфракраспые спектры сплошных молекул, ИЛ, 1963, стр. 499. ⁵ R. Асheson, М. Robinson, J. Chem. Soc., 1956, 484. ⁶ H. Ley, G. Pfeifer, Ber., 54, 376 (1921). ⁷ J. Braun, K. Heider, E. Müller, Ber., 51, 279 (1918).