УДК 532.61.68

ФИЗИЧЕСКАЯ ХИМИЯ

Б. Д. СУММ, Э. А. РАУД, Е. Д. ЩУКИН

КИНЕТИКА ОГРАНИЧЕННОГО СМАЧИВАНИЯ ТВЕРДЫХ ТЕЛ

(Представлено академиком П. А. Ребиндером 30 VI 1972)

Смачивание и растекание играют важную роль во многих физико-химических явлениях и технологических процессах. В ряде случаев нужно знать зависимость смоченной илощади от времени контакта жидкости с твердым телом. Эта задача теоретически решена для растекания (полного смачивания), т. е. для процесса, для которого все время выполняется термодинамическое условие $K\sigma_{23} > K\sigma_{13} + \sigma_{12}$ (1, 2), K— коэффициент шероховатости твердой поверхности, σ_{23} , σ_{13} , σ_{12} — удельные свободные поверхностные энергии на границах раздела твердое тело— окружающая среда, твердое тело— жидкость, жидкость— среда. В данной работе анализируется кинетика ограниченного смачивания горизонтально расположенной твердой поверхности, а именно, рассматривается процесс двухмерного перемещения жидкости от источника ограниченной массы (капли), происходящий при выполнении условия $K\sigma_{23} > K\sigma_{13} + \sigma_{12} \cos \theta(t)$. Здесь $\theta(t)$ — краевой угол, изменяющийся в процессе смачивания (180° > $\theta(t) > \theta_{D} > 0$ °), t— время, θ_{D} — равновесный краевой угол.

исходящий при выполнений условий $Roz_3 - Roz_3 - Ro$

 $\Delta \sigma = \sigma_{12} [\cos \theta_{p} - \cos \theta(t)]. \tag{1}$

Расчет силы трения f_2 в слое, имеющем форму сегмента, весьма сложен. Приближенно

$$f_2 \approx \kappa \pi^2 \mu \frac{r^4}{V} \frac{dr}{dt} \,. \tag{2}$$

Здесь μ — вязкость жидкости, $\varkappa \approx 10$ — безразмерный коэффициент, учитывающий повышение сопротивления вследствие неравномерности толщины слоя (1). Для нахождения кинетического уравнения смачивания остается найти зависимость $\Delta \sigma = f(r)$.

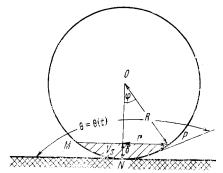
Рассмотрим сначала интервал $60^{\circ} \ge \theta(t) > \theta_{\rm p}$. В этом случае $\theta(t) \approx \frac{4 \ V}{\pi \ r^3}$ и

$$\Delta\sigma = \frac{\sigma_{12}}{2} \left(\frac{4V}{\pi r^3} \right)^2 \left[1 - \left(\frac{\pi \theta_p r^3}{4V} \right)^2 \right]. \tag{3}$$

Тогда из условия $f_1 = f_2$ получим, что радиальная скорость перемещения периметра смачивания

$$\frac{dr}{dt} = \frac{16}{\pi^{3} \kappa} \frac{V^{3} \sigma_{12}}{\mu r^{9}} \left[1 - \left(\frac{\pi \theta_{p}}{4V} \right)^{2} r^{6} \right]. \tag{4}$$

Начальное условие $r=r_1$ при $t=t_1$ определяется выбором верхней границы интервала краевых углов.


В системах, где отсутствуют интенсивное химическое взаимодействие и массообмен, можно принять, что значения V и μ остаются постоянны-

ми до конца процесса смачивания. Тогда при
$$r < \left(\frac{4V}{\pi\theta_p}\right)^{1/3}$$
 получим из (4)

$$\int_{r_{1}}^{r} r^{9} \left[1 + \left(\frac{\theta_{p} \pi}{4V} \right)^{2} r^{6} + \left(\frac{\theta_{p} \pi}{4V} \right)^{4} r^{12} + \dots \right] dr =$$

$$\dots + \left(\frac{\theta_{p} \pi}{4V} \right)^{2n} r^{6n} + \dots \right] dr =$$

$$= \frac{16}{\pi^{3} \times \frac{V^{3} \sigma_{12}}{\mu}} \int_{t}^{t} dt. \tag{5}$$

случай Рассмотрим $r \ll r_{\rm p} =$ $= (4V/\pi\theta_p)^{\gamma_s}$, где r_p — радиус смоченной поверхности, соответствующий капле с краевым углом θ_p . Поскольку $r_1/r \ll 1$ и $t_1/t \ll 1$, получим из (5)

Рис. 1. Схематическое изображение капли в начальный момент соприкосновения с поверхностью твердого тела

$$r = (160 / \pi^{3} \chi)^{0.1} V^{0.3} (\sigma_{12} / \mu)^{0.1} t^{0.1} = V^{0.3} (\sigma_{12} / \mu)^{0.1} t^{0.1} = A t^{0.1}.$$
 (6)

Полученное решение хорошо согласуется с экспериментальными данными как по величине показателя степени п, так и по величине коэффициента пропорциональности A (см. табл. 1). Соотношение $r \sim t^{0,1}$ выполняется и в некоторых других системах (3 , 4 , 6). В частности, при контакте жидких полимеров и глицерина со слюдой, тефлоном, алюминием скорость перемещения периметра смачивания $v \sim t^{-0.83}$ (7), а из (6) следует $v \sim t^{-0.90}$.

Таблица 1

Система жидкость — твердое тело (т, г)	Теория		Эксперимент		
	n	A.10-2, CM CCK ⁿ	n	А.10-2 см/сек ⁿ	иньолоп
Вазелиговое место — алмаз (10 ⁻³) Глицерии — медь (0,4) 3% раствор индия в ртути — кадмий (10 ⁻²) Полидиметилсилоксаны — фторо- пласт-4 (10 ⁻³)	0,10 0,10 0,10 0,10	15 85 32 5	0,09 0,40 0,11 0,12	16 83 14 6	(³) (²) Наша рабо- та (⁵)

При $r < (4V/\pi\theta_{\,\mathrm{p}})^{\gamma_{\!\scriptscriptstyle 3}}$, в зависимости от требуемой точности, необходимо учитывать два или несколько членов ряда в соотношении (5). Тогда по-прежнему $r = At^n$, но n < 0.1.

Расчет кинетики смачивания во всем интервале тупых краевых углов сильно осложнен тем, что здесь не удается пайти зависимостей $f_1=f_1\left(r\right)$ и $f_2 = f_2(r)$. Приближенный расчет можно сделать лишь для начального момента соприкосновения капли радиуса R с плоской поверхностью твердого тела. В этом случае можно принять

$$\cos \theta (t) \approx \varphi^2 / 2 - 1 = r^2 / 2R^2 - 1,$$

где $\varphi = 180^{\circ} - \theta(t)$. Отсюда

$$\Delta \sigma \approx \sigma_{12} (\cos \theta_{\rm p} + 1 - r^2 / 2R^2)$$

(рис. 1). Поскольку $r \ll R$, $\Delta \sigma \approx \sigma_{12}(1+\cos\theta_{\rm p})$. Необходимо учесть далее, что в начальный момент в движение вовлекается не весь объем капли, а лишь небольшая часть $V_s \approx V_{MNP} \approx r^3 \phi / 4 \approx r^4 / 4R$. Тогда получим, что $dr/dt \sim \left[\sigma_{12}(1+\cos\theta_{\rm p})\right]r/\mu R$. Отсюда

$$r \sim r_0 \exp\left[\frac{\sigma_{12} \left(1 + \cos \theta_p\right)}{\mu R} \left(t - t_0\right)\right]. \tag{7}$$

Здесь $r_{\rm o}$ — радиус начальной площади контакта, соответствующий времени $t_{\rm o}$.

На конечной стадии процесса смачивания $\theta(t) \to \theta_p$, поэтому $\Delta \sigma \to 0$, в то время как сила вязкого сопротивления сохраняет конечное значение. Это обстоятельство является одной из причин гистерезиса краевого угла нри натекании. В последнее время при анализе гистерезиса смачивания основное внимание уделяют неидеальности поверхности твердого тела (см., например, (8)). Из результатов данной работы следует, что гистерезис смачивания должен иметь место и на идеальной поверхности.

Авторы с благодарностью отмечают участие П. А. Ребиндера в обсуждении работы.

Московский государственный университет им. М. В. Ломоносова

Поступило 30 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Д. Щукин, Ю. В. Горюнов и др., Колл. журн., 25, 108 (1963). ² Э. А. Рауд, Б. Д. Сумм, Е. Д. Щукин, ДАН, 205, № 5 (1972). ³ Р. Ф. Кохан, А. В. Ножкина, С. Я. Вейлер, Научно-технич. реф. сборн., Алмазы, М., в. 8 (1971). ⁴ Сборн. Физическая химия поверхностных явлений при высоких температурах, 1971, стр. 155. ⁵ В. В. Арсланов, Т. И. Иванова, В. А. Огарев, ДАН, 198, 1113 (1971). ⁶ J. Н. Schulman, J. Leia, Surface Phenomena in Chemistry and Biology, 1950, p. 236. ⁷ Т. К. Кwei, H. Schonhorn, J. Coll. Interf. Sci., 28, 543 (1968). ⁸ R. E. Johnson, R. H. Dettre, Adv. in Chem. Ser., 43, 112 (1964).