Доклады Академии наук СССР 1973. Том 209, № 1

УДК 539.26: 541.49: 546.733

ХИМИЯ

Т. Н. ТАРХОВА, К. Н. АКАТОВА, академик АН МССР А. В. АБЛОВ. н. и. беличук

МОЛЕКУЛЯРНАЯ СТРУКТУРА КОБАЛЬТОВОГО КОМПЛЕКСА ТИОСЕМИКАРБАЗОНА α-ПИРИДИНАЛЬДЕГИДА

Изучение α-(N)-гетероциклических тиосемикарбазонов и их комплексов представляет интерес с точки зрения получения информации об электронном и стереохимическом различии между ними для объяснения механизма противораковой активности и поисков наименее токсичных соединений $(^{1-4})$.

К настоящему времени изучены кристаллические структуры своболного бис-тиосемикарбазона 2-кето-3-этоксимасляного альдегида и его медпого комплекса (5, 6), пикелевого комплекса тиосемикарбазона изохинолип-1-карбоксальдегида (7), бариевой соли хелата хрома с тиосемикарбазоном пировиноградной кислоты (8).

Представляло интерес изучить хедат тиосемикарбазона одного из простейших α-(N)-гетероциклических альдегидов, а именно 2-пиридинового. С этой целью было проведено рентгеноструктурное исследование питрата бис-(пиридинальдегидтиосемикарбазопато)-кобальта $[Co(C_7H_7N_4S_2)]NO_3$. Вишнево-коричневые хорошо ограненные кристаллы этого соединения син-

тезированы по методике, описанной в (⁹).

триклинной йондатнемекс ячейки a = 12.48Параметры b=8,76 (5), c=9,29 (6) Å, $\alpha=92^{\circ}$, $\beta=103,2^{\circ}$, $\gamma=102,2^{\circ}$ установлены из рентгенограмм качания и вейсенберговских разверток. Пикнометрическая илотность, измеренная в толуоле, $\sigma_n = 1.65 \text{ г} \cdot \text{см}^{-3}$, хорошо согласуется с рентгеновской $\sigma_p = 1,66$ г·см⁻³ при двух формульных единицах на ячейку. Отсутствующий пьезоэффект наряду со статистическими испытаниями по методу интегральных кривых и моментов указывал на федоровскую группу P $\tilde{1}$ как наиболее вероятную.

Трехмерный набор интенсивностей получен от ограненного кристалла с размерами $0.5 \times 0.5 \times 0.2$ мм³. Общее число 1570 ненулевых отражений hk0 - hk5 и h0l - h1l (излучение Мо K_a , максимальное $\sin \vartheta / \lambda = 0.68$) получено по эквинаклонной схеме в гониометре Вейсенберга с использованием кратных экспозиций. Оценка интенсивностей визуальная по маркам почернения со шкалой 24. Машинное приведение к общей шкале проводилось с одновременной коррекцией на кинематический и поляризационный факторы и, пачиная со второй слоевой, поправкой на форму пятна по Филлипсу. Поправка на поглощение не вводилась.

Трехмерная функция Патерсона P (uvw) апализировалась по методу кратных пиков (10). Пять максимальных по «весу» пиков были выбраны в качестве опорных векторов для проведения минимилизации. Полученные функции $M_2(xyz)$ использовались для построения функций выделения более высокого ранга.

Сопоставление 12 различных функций выделения позволило зафиксировать 25 пиков, 11 из которых с лучшим статистическим подтверждением послужили основой дальнейшей расшифровки структуры. Поскольку дифференциация атомов и надежное выделение центра симметрии на этом этапе были невозможны, структура решалась первоначально в ацентричном варианте. Цикл последовательных приближений трехмерной электронной плотности с чередующимся уточнением методом наименьших квадратов,

Позиционные и тепловые параметры базисных атомов структуры нитрата бис-(пиридинальдегидтиосемикарбазонато) кобальта (III)

Атом	x/a	y/b	z/c	Bj
Co	$0,2354 \pm 0,0003$	$0,3015\pm0,0005$	0.0490 ± 0.0005	2,03
S ₁	0.1861 ± 0.0005	$0,0567 \pm 0,0009$	0.936 ± 0.001	2,79
S_2	$0,2328 \pm 0,0006$	$0,4021\pm0,0009$	0.8333 ± 0.0009	2,15
N_1	$0,083 \pm 0,002$	0.316 + 0.003	0.022 ± 0.003	1,56
N_2	$0,307 \pm 0,002$	$0,505\pm0,003$	0.151 ± 0.003	2,27
N_3	0.387 ± 0.002	$0,277\pm0,003$	0.082 ± 0.003	1,40
N_4	$0,213\pm0,002$	$0,239 \pm 0,003$	$0,232\pm0,003$	2,13
N_5	$0,420\pm0,002$	$0,148 \pm 0,003$	0.038 ± 0.003	2,05
N_6	0.346 ± 0.002	0.897 ± 0.003	0.897 ± 0.003	3,93
N_7	$0,022 \pm 0,002$	0,353+0,003	0.895 ± 0.003	3,50
N_8	0.040 ± 0.002	0.430 ± 9.003	$0,652\pm0,003$	2,99 3,58
N_9	0.252 ± 0.002	$0,677 \pm 0,003$	0,561+0,003	3,38
C_1	$0,283 \pm 0,002$	$0,173\pm0,004$	0.348 ± 0.004	2,16
C_2	$0,246\pm0,002$	$0,116\pm0,003$	$0,467\pm0,004$	2,69 3,22
Сз	$0,146 \pm 0,002$	$0,125\pm0,003$	$0,487 \pm 0,004$	3,24
$\frac{\mathrm{C_4}}{\mathrm{C}}$	0.061 ± 0.002	0.184 ± 0.004	0.377 ± 0.004	2,23
C_5	$0,100\pm0,002$	0.245 ± 0.003	$0,253\pm0,004$	2,17
C_6	$0,425\pm0,002$	0.536 ± 0.004	0.194 ± 0.004	3,16
C7	$0,486 \pm 0,002$	0.676 ± 0.004	0,262+0,004	3,07
$\frac{\mathrm{C_8}}{\mathrm{C}}$	0,437 + 0,002	0.802 ± 0.003	$0,292 \pm 0,004$	3,36
C9	0.318 ± 0.002	$0,775 \pm 0,004$	$0,244\pm0,004$	2,76
${\mathrm C_{10} \atop \mathrm C_{11}}$	0,259+0,002	0.635 ± 0.004	0.178 ± 0.004	2,96 3,08 3,70
	$0.028 \pm 0.002 \\ 0.466 \pm 0.002$	0.282 ± 0.004	$0,123\pm0,004$	3,00
C_{12}	$0,400\pm0,002$ $0,328\pm0,002$	0.393 ± 0.004	$0,148\pm0,004$	3,10
C ₁₃	0,525±0,002	0.035 ± 0.003	$0,958 \pm 0,004$	3,14
C ₁₄ O ₁	0.086 ± 0.002 0.189 ± 0.002	0.392 ± 0.003	0.795 ± 0.004	0,80
O_2	$0,189\pm0,002$ $0,357\pm0,002$	$0,758 \pm 0,003$	$0,610\pm0,003$	4,37
	0.331 ± 0.002 0.208 ± 0.002	0,720+0,004	$0,593\pm0,004$	4,95
O_3	1 0,200±0,002	$0,552 \pm 0,004$	$0,474\pm0,004$	4,07

а также кристаллохимическая информация позволили установить положение центра симметрии в первоначальной ацентричной ячейке. Дальнейший обсчет и уточнение структуры проводились в центросимметричном варианте. Окопчательное значение коэффициента недостоверности $R_{bid}=47\,\%$.

В табл. 1 приведены позиционные и изотропные тепловые параметры для всех 29 независимых атомов структуры вместе со стандартными отклонениями. Атомы водорода не фиксировались.

Важнейшие межатомные расстояния и валентные углы, рассчитанные по координатам атомов, приведены в табл. 2.

Таблица 2

Важиейшие межатомчые расстояния (A) и валентные углы (град.) в катионе $[Co(C_7H_7N_4S)_2]^+$

$$\begin{array}{llll} \text{Co} - \text{S}_1 &= 2,26 \pm 0,02 & \text{S}_1 - \text{Co} - \text{N}_1 &= 92 \pm 1 \\ \text{Co} - \text{S}_2 &= 2,22 \pm 0,02 & \text{S}_1 - \text{Co} - \text{N}_2 &= 169,6 \pm 0,1 \\ \text{Co} - \text{N}_1 &= 1,91 \pm 0,03 & \text{S}_1 - \text{Co} - \text{N}_3 &= 86 \pm 1 \\ \text{Co} - \text{N}_2 &= 1,91 \pm 0,03 & \text{S}_2 - \text{Co} - \text{N}_4 &= 167,3 \pm 0,1 \\ \text{Co} - \text{N}_3 &= 1,89 \pm 0,03 & \text{N}_1 - \text{Co} - \text{N}_2 &= 97 \pm 1 \\ \text{Co} - \text{N}_4 &= 1,87 \pm 0,03 & \text{N}_1 - \text{Co} - \text{N}_3 &= 176,2 \pm 0,1 \\ \text{S}_1 - \text{C}_{13} &= 1,78 \pm 0,03 & \text{N}_1 - \text{Co} - \text{N}_4 &= 80,7 \pm 0,9 \\ \text{S}_2 - \text{C}_{14} &= 1,77 \pm 0,03 & \text{N}_2 - \text{Co} - \text{N}_3 &= 84 \pm 1 \end{array}$$

На рис. 1 приведен катион [Co(C₇H₇N₄S)₂]⁺, образованный двумя трехдентатными лигандами тиосемикарбазона 2-пиридинальдегида. Искаженное октаэдрическое окружение центрального атома кобальта образуют находящиеся в цис-положении атомы серы и азота гидразинового остатка и пиридина. Трехдентатным лигандом является также тиосемикарбазон изо-

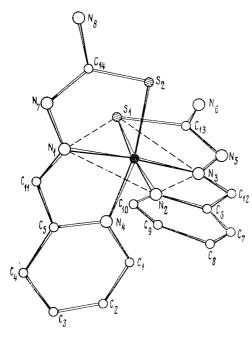


Рис. 1. Структура катиона $\left[\text{Co}\left(\text{C}_7\text{H}_1\text{N}_4\text{S}\right)_2\right]$ +

хинолин-1-карбоксальдегида в никелевом комплексе (7). Пятичленпые хелатные циклы CoNCCN и CoNNCS, как и весь лиганд в целом, являются плоскими. Максимальное отклонение от плоскости, приведенной методом наименьших квадратов через соответствующие атомы лиганда, 0,03 Å при среднем отклонении 0,017 Å. Плоскость пиридинового кольца наклонена к плоскости $S_1N_2N_3$ лиганда примерно на 5° .

Расстояния Co—S 2,26 и 2,22 Å хорошо согласуются с суммой ковалентных радиусов 2,26 Å, расстояния Co—N лежат в пределах 1,87—1,91 Å, что несколько меньше соответствующих расстояний в октардических комплексах кобальта. Расстояние C—S 1,77 и 4,78 А несколько больше наблюдаемых в свободных тиосемикарбазонах: 1,678 Å в 4-пиридиповом, 1,695 Å в 2-тиофеновом (7) и 1,687 Å в 2-кеко-3-этоксимасляном альдегидах

(5). Тенденция к увеличению расстояния С—S наблюдалась также в никелевом комилексе (7), где оно равно 1,719 и 1,735 Å.

Рептгеноструктурное исследование координационного соединения нитрита бис-(пиридинальдегидтиосемикарбазоната)-Со(III) подтвердино октаэдрическую координацию кобальта, трехдентатность и плоское строение лигандов, образующих четыре пятичленных хелатных цикла.

Весь обсчет структуры проводился но программам комплекса «Рентген».

Горьковский исследовательский физико-технический институт Институт химии Академии наук МССР Кишинев

Поступило 18 V 1972

цитированная литература

¹ F. A. French, I. Blanz, J. Med. Chem., 9, 585 (1966). ² H. G. Petering, ll. H. Buskirk, G. E. Underwood, Cancer Res., 24, 367 (1964). ³ H. G. Petering, H. H. Buskirk et al., Pharmacologist, 5, 271 (1963). ⁴ F. A. French, B. L. Freedlander, Cancer Res., 18, 1290 (1958). ⁵ E. G. Gabe, M. R. Taylor et al., Acta crystallogr., B25, 1620 (1969). ⁶ M. R. Taylor, E. J. Gabe et al., J. Am. Chem. Soc., 88, 1845 (1966). ⁷ M. Mathew, G. Palenik, J. Am. Chem. Soc., 91, 6310 (1969). ⁸ Г. Ф. Володина, Г. А. Киоссеидр., ДАН, 200, 1346 (1971). ⁹ А. В. Аблов, Н. И. Беличук, ЖНХ, 14, 179 (1969). ¹⁰ В. П. Головачев, Ю. Н. Дроздовидр., Кристаллография, 16, 725 (1971).