УДК 541.515 ХИМИЯ

А. И. ПРОКОФЬЕВ, Н. Н. БУБНОВ, С. П. СОЛОДОВНИКОВ, И. С. БЕЛОСТОНКАЯ, В. В. ЕРШОВ

ВНУТРИМОЛЕКУЛЯРНЫЙ ОБМЕН ВОДОРОДА В 3.6-ДИ-ТРЕТ.-БУТИЛ-2-ОКСИФЕНОКСИЛЕ

(Представлено академиком М. И. Кабачником 30 Х 1972)

Анализ формы линий в спектрах э.п.р. радикалов в растворе может дать полезную информацию о внутримолекулярных перестройках этих радикалов, происходящих с частотами, сопоставимыми с константами сверхтонкого взаимодействия (с.т.в.). В спектрах э.п.р. такие переходы сопровождаются изменением ширины отдельных компонент сверхтонкой структуры, анализ которой позволяет оценивать величины частот переходов одной формы радикала в другую и энергетический барьер таких переходов. Подобные исследования выполнены на примере внутримолекулярного электронного обмена в анион-радикалах диарилметанов (¹), семихинонов (²), некоторых катион-радикалов (³). Внутримолекулярный перенос водорода исследован в ряду нитроксильных радикалов (⁴).

В настоящей работе внутримолекулярный водородный обмен исследован на примере 3,6-ди-трет.-бутил-2-оксифеноксила, полученного облучением раствора исходного соединения ультрафиолетовым светом непосредственно в резонаторе спектрометра э.п.р. (5):

Спектр э.п.р. этого радикала приведен на рис. 1a, 6. В условиях быстрого перехода формы A в форму B спектр состоит из триплета (1:2:1). обусловленного взаимодействием неспаренного электрона с протонами кольца $(a_{\rm H}=3,92~{\rm rc})$, каждая компонента которого состоит из дублета за счет протона гидроксильной группы $(a_{\rm H}=1,62~{\rm rc})$. При уменьшении частоты обмена между A,B-формами центральная компонента триплета сильно уширяется. Это уширение $\Delta (T_2^{-1})$ описывается выражением $\binom{3}{2}$

$$\Delta (T_2^{-1}) = 2\pi \gamma_e^2 (a_A - a_B)^2 (M_A - M_B)^2 / v_{00M}$$

где $v_{05\text{M}}$ — частота обмена между A,B-формами, M_{A} , M_{B} — магнитные квантовые числа полной Z-компоненты ядерного углового момента одного кольцевого протона в формах A и B, a_{A} и a_{B} — константы с.т.в. этого протона в формах A и B, γ_e — гиромагнитное отношение для электрона.

С использованием этого выражения были вычислены $v_{oбм}$ атома водорода в различных растворителях, и из температурных зависимостей определены энергетические барьеры. Эти данные представлены в табл. 1. Как видно, максимальная частота (и минимальная энергия) перехода между А- и В-формами наблюдается в неполярных средах. С увеличением полярности растворителя и его способности к образованию водородных связей уменьшается частота обмена и растет энергетический барьер.

При этом предэкспоненциальный множитель v₀ остается близким к величине, характерной для мономолекулярных реакций. Уменьшение частоты перехода атома водорода в спиртовых растворителях можно объяснить образованием водородной связи между молекулой спирта и атомом водорода гидроксильной группы исследуемого радикала, что увеличивает время жизни «предельной» структуры и повышает энергетический барьер перехода.

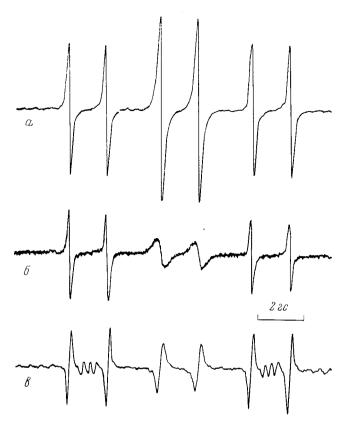


Рис. 1. Спектры э.п.р. 3,6-ди-трет.-бутил-2-оксифеноксила: a — при 60° , толуол, \acute{b} — при -60° , толуол, \acute{s} — при 10° С, дейтерированный хлороформ

Облучение исходного соединения в частично или полностью дейтерированных растворителях приводит к образованию соответствующего феноксила с дейтерием в феноксильной группе, спектр э.п.р. которого (рис. 1e, 2a) представляет собой дублет ($a_{\rm H}=7.86$ гс), обусловленный взаимодействием песпаренного электрона с протоном кольца (в n-положении к феноксильному кислороду), каждая комнонента которого содержит три линии за счет дейтерия ($a_{\rm D}=0.26$ гс). Отметим, что отношение $a_{\rm H}/a_{\rm D}$ для гидроксильной групны практически совпадает с отношением констант с.т.в. для свободных атомов водорода и дейтерия.

Интересно отметить, что в семихинонном анион-радикале, полученном при восстановлении исходного хинона щелочными металлами (Li, Na, K) и электрохимически в различных растворителях, отсутствует заметное уширение центральной компоненты триплета кольцевых протонов ($a_{\rm H}=3,45~{\rm rc}$), что свидетельствует о полной симметрии распределения плотности неспаренного электрона в молекуле семихинона. Это связано, по-видимому, не с высокой скоростью перехода катиона между кислородпыми атомами, а с его симметричным расположением между ними, которое обус-

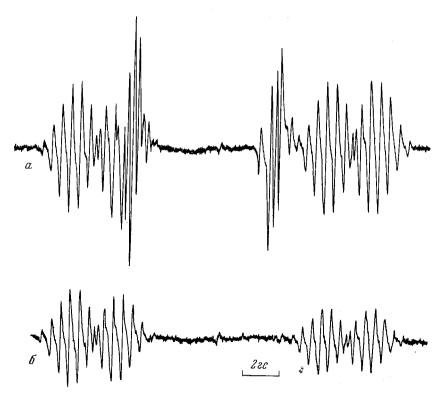


Рис. 2. Спектры э.п.р. 3,6-ди-трет.-бутпл-2-оксифеноксила— с дейтерием в гидроксильной группе (дублет триплетов) и радикала, образующегося в результате присоединения к исходному хинону радикалов из полностью дейтерированного метанола; под облучением, $a=20^{\circ}$ С; тот же образец без облучения, —20° С (б). Спектр, отвечающий дейтерированному в гидроксильную группу феноксила, исчез, виден спектр вторичного радикала

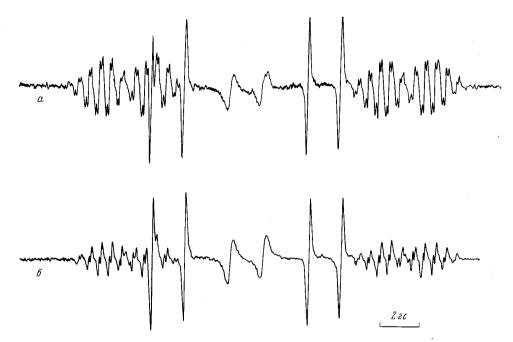


Рис. 3. Спектры э.п.р. первичного и вторичного радикалов: a — этанол, δ — изопронанол (40° C)

Частоты обмена (**v**_{обм} при —20° C) и энергетические барьеры перехода между А- и В-формами

Растворитель	ν _{ΟΘΜ} ·10 ⁻⁹ , ceκ ⁻¹	ν ₀ ·10 ⁻¹² , Cen ⁻¹ ,	^ε акт, ккал/моль	Растворитель	ν _{ΟϬΜ} ·10-», сек-1	ν ₀ ·10 ⁻¹² , cer-1	є _{акт} , ккал/моль
Метанол Этанол Изопропанол	$\begin{bmatrix} 0,22 \\ 0,23 \\ 0,27 \end{bmatrix}$	$\begin{array}{c} 7,1 \\ 2,2 \\ 2,04 \end{array}$	$\begin{bmatrix} 5, 3 \pm 0, 3 \\ 4, 8 \pm 0, 3 \\ 4, 6 \pm 0, 2 \end{bmatrix}$		0,39 1,28 1,28	2,16 0,33 0,33	$\begin{bmatrix} 4,4\pm0,2\\2,86\pm0,2\\2,86\pm0,2 \end{bmatrix}$

ловлено не только большим радиусом катиона металла по сравнению с атомом водорода, но и наличием вокруг него сольватной оболочки.

При облучении исходного хинона в растворе спиртов помимо спектра э п.р. исследуемого феноксила появляется другой спектр, характеризующийся большим дублетным расщеплением (рис. 2, 3). Появление этого спектра, по-видимому, связано с присоединением к исходному хинону радикала из молекул растворителя, образующегося в результате фотоокисления исходным хиноном. Так, например, в случае этанола:

При этом максимальное дублетное расщепление ($a_{\rm H}=14~{\rm rc}$) можно отнести к кольцевому протону, находящемуся в n-положении к феноксильному кислороду, дублет ($a_{\rm H}=2,2~{\rm rc}$) соответствует m-протону. Каждая компонента этого дублета содержит десять линий с биномиальным соотношением интенсивностей ($a_{\rm H}=0,5~{\rm rc}$), которые могут принадлежать только o-трет.-бутильной группе по отношению к феноксильному кислороду. Наличие малых расщеплений, содержащихся в каждой из десяти линий (триплет для этанола и дублет для изопропанола с $a_{\rm H}=0.12~{\rm rc}$), зависит, по-видимому, от строения присоединяющегося к хинону радикала, как это показано на приведенной выше схеме для этанола.

Интересно отметить, что эти радикалы значительно стабильнее феноксилов, образующихся при «прилипании» атома водорода к исходному хинону (рис. 2).

Институт элементоорганических соединений Академии наук СССР Поступило 30 X 1972

Институт химической физики Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ S. P. Solodovnikov, M. I. Kabachnik, Tetrahedron Letters, № 19, 1941 (1972). ² T. E. Gough, P. R. Hindle, Canad. J. Chem., 49, 2412 (1971). ³ J. R. Bolton, P. D. Sullivan, Adv. Magn. Res., 4, 39 (1970). ⁴ H. G. Aurich, R. Stork, Tetrahedron Letters, № 7, 555 (1972). ⁵ T. A. Claxton, T. E. Gough, M. C. R. Symons, Trans. Farad. Soc., 62, 279 (1966). ⁶ G. K. Fraenkel, J. Phys. Chem., 71, 139 (1967).