УДК 541.541.12.0123

ФИЗИЧЕСКАЯ ХИМИЯ

Т. Е. РУНАКОВА, Ю. В. МОИСЕЕВ, В. Ч. ПАЛЬВАНОВ, Г. Е. ЗАИКОВ

КИНЕТИКА И МЕХАНИЗМ ДЕСТРУКЦИИ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА В ВОДНЫХ РАСТВОРАХ СЕРНОЙ КИСЛОТЫ

(Представлено академиком Н. М. Эмануэлем 20 XI 1972)

Деструкция полиэтилентерефталата (ПЭТФ) в водных растворах серной кислоты представляет сложный физико-химический процесс, включающий диффузию агрессивной среды в полимер и химическую реакцию — гидролиз эфирных связей. Данная работа посвящена исследованию кинетики и мехапизма деструкции пленок ПЭТФ различной толщины в растворах серной кислоты концентрации 53-70% по массе и в интервале температур $90-126^\circ$.

Кинетика деструкции изучалась по изменению средпечислеппого молекулярного веса ПЭТФ, определяемого в м-крезоле при 25°. Скорость рас-

пада эфирных связей в полимере равна

$$W = dC_n/dt = k (C_n^0 - C_n) C_{\text{H}_2\text{SO}_4} C_{\text{H}_2\text{O}}, \tag{1}$$

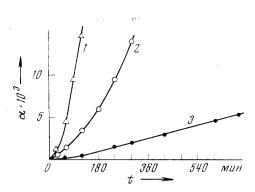
где C_n^0 — начальная концентрация эфирных связей, C_n — концентрация распавшихся эфирных связей, $C_{\text{H}_2\text{SO}_4}$ п $C_{\text{H}_2\text{O}}$ — соответственно концентрации серной кислоты и воды в полимере, k— константа скорости распада эфирных связей.

Концентрация катализатора— серной кислоты в полимере может быть найдена из уравнения

$$\partial C_{\text{H}_2\text{SO}_4} / \partial t = D_{\text{H}_2\text{SO}_4} \partial^2 C_{\text{H}_2\text{SO}_4} / \partial x^2, \tag{2}$$

где $D_{\text{П}_2\text{SO}_4}$ — коэффициент диффузии серной кислоты в ПЭТФ, x— координата диффузии. Серная кислота в ходе реакции не расходуется, так как ии эфирные связи в ПЭТФ, ни продукты реакции— терефталевая кислота и этиленгликоль в заметной степени в исследуемых растворах серной кислоты не протонизуются (1).

Вода расходуется при актах распада эфирных связей в ПЭТФ и концентрацию воды в полимере паходим из уравнения


$$\partial C_{\mathrm{H}_2\mathrm{O}}/\partial t = D_{\mathrm{H}_2\mathrm{O}}\partial^2 C_{\mathrm{H}_2\mathrm{O}}/\partial x^2 - k\left(C_n^0 - C_n\right) \cdot C_{\mathrm{H}_2\mathrm{SO}_4} C_{\mathrm{H}_2\mathrm{O}},\tag{3}$$

где $D_{\rm H_{2O}}$ — коэффициент диффузии воды в ПЭТФ. Для определения $D_{\rm H_{2O}}$ и $D_{\rm H_{2O}}$ были проведены следующие эксперименты. По привесу изучалась сорбция водных растворов серной кислоты в образцы ПЭТФ при температурах $25-80^\circ$ и концентрациях до 46,3% $\rm H_2SO_4$, в условиях, когда практически не происходит деструкции ПЭТФ за время эксперимента. После установления сорбционного равновесия делались срезы толщиною $30-40~\mu$ с образцов, которые прокрашивались различными кислотными индикаторами и анализировались в счетчике β -излучения при использовании в качестве диффузата серной кислоты, меченной S^{35} . Таким образом, при коптакте ПЭТФ с водными растворами серной кислоты диффузия воды в полимер происходит гораздо быстрее, чем серной кислоты. $D_{\rm H_{2O}}$ пе зависит

от концентрации серной кислоты и изменяется с температурой по уравнению

$$D_{
m H_{2O}} = 4.5 \cdot 10^{-2} \exp \left(- \frac{10000 \pm 1000}{RT} \right)$$
 .

Попытки определить $D_{\text{H}_2\text{SO}_4}$ пе дали положительных результатов из-за очень малой растворимости серной кислоты. Можно только констатировать, что $D_{\text{H}_2\text{SO}_4} \ll D_{\text{H}_2\text{O}}$. Таким образом, можно считать, что концентрация воды в ПЭТФ в течение экспериментов по деструкции является постоянной и равна растворимости воды в ПЭТФ $C_{\text{H}_2\text{O}}^0$, т. е. задача сводится только к решению уравнений (1) и (2). При решении этих уравнений были следаны предположения: а) k и $D_{\text{H}_2\text{SO}_4}$ сохраняются неизменными в тече-

Рпс. 1. Зависимость степени превращения (а = $C_{_R}/C_{_R}^0$) от времени для процесса деструкции пленок ПЭТФ разной толщины в 53% $\rm H_2SO_4$ при 116° C. $\it I-5\mu$, $\it 2-19$, $\it 3-80$

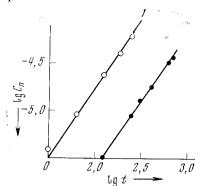


Рис. 2. Зависимость $\lg C_n$ от $\lg t$ для процесса деструкции пленок ПЭТФ разной толщины в 53 % $\rm H_2SO_4$ при 116° С. $I-19\mu,\ 2-80$

ние эксперимента; б) реакция распада эфирных связей в ПЭТФ практически пеобратима; в) $C_n^0 - C_n \simeq C_n^0$, так как эксперименты по деструкции пленок ПЭТФ проводились до небольших степеней превращения (<0,02). Решение уравнений (1) и (2) можно представить в виде

$$C_n = k_{0 \oplus \Phi} C_{\text{H}_2 \text{SO}_4}^0 t \left\{ 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \left[1 - \exp\left(2n + 1\right)^2 y \right] \frac{1}{(2n+1)^4 y}, \tag{4} \right\}$$

где $k_{\rm deph} \simeq k C_n^{~0} C_{\rm H_2O}^0, \, y = \pi^2 D_{\rm H_2SO_4} / \, l^2, \, \, C_{\rm H_2S_4}^0 \, -$ растворимость серной кислоты с ПЭТФ, l — толщина пленки. Для очень тонких пленок $y \gg 1$ и

Зависимость произведения эффективной константы скорости и растворимости серной кислоты в иленках ПЭТФ от температуры и концентрации кислоты в растворе $k_{\text{офф}} C_{\text{H-sO}_4}^0 \cdot 10^{\text{s}} \cdot \text{сек}^{-1} \cdot \text{r-sks} \cdot \text{cm}^{-3}$

[H ₂ SO ₄] no macce, %	126°	116°	90°
53,0	4	1,7	$\begin{bmatrix} 0,3 \\ 0,7 \\ 1,6 \end{bmatrix}$
60,0	8	3,7	
70,0	17	8,0	

II р и м е ч а и и е. Средняя опибка при определении $k_{\partial \Phi \Phi} \ C^0_{\mathbf{H}_2 \mathrm{SO}_4}$ составляет $\pm 10\%$.

$$C_n = k_{\partial \Phi \Phi} C_{H-SO}^0 t. (5)$$

При y < 1

$$C_n = k_{0\phi\phi} C_{\text{H}_2\text{SO}_4}^0 t \frac{8}{\pi^2} \varphi(y),$$
 (6)

где
$$\varphi(y)=\sum_{n=0}^{\infty}\left[\exp{-(2n+1)^2y}-1+\right.$$
 $+(2n+1)^2\left[\frac{1}{(2n+1)^4y}\right]$. С помощью рас-

четов, проведенных на ЭВМ, была установлена связь

$$\varphi(y) = 0.5896 \sqrt{y}$$

и, таким образом,

$$C_n = \frac{4}{\sqrt{\pi}} k_{:i\phi\phi} C_{\text{H}_2\text{SO}_4}^0 \frac{1}{l} D_{\text{H}_2\text{SO}_4}^{1/2} t^{3/2}. \tag{7}$$

На рис. 1 приведена зависимость степени превращения α от времени для процесса деструкции пленок ПЭТФ различной толщины в 53% $\rm H_2SO_4$ при 116°. Для пленки толщиной 5 μ начиная с 30 мин. имеется липейная зависимость от времени t. Используя уравнение (5), находим произведение $k_{\rm эфф}C_{\rm H_2SO_4}^0$. Значение $D_{\rm H_2SO_4}$ может быть определено из уравнения (7) (рис. 2). Средние значения $D_{\rm H_2SO_4}$ при разных температурах приведены ниже:

T-pa, °C 126 116 90
$$D_{\rm HoSO_4}{\cdot}10^{12},~{\rm cm^2/ce\kappa}~7{\pm}2~4,5{\pm}1,5~1,5{\pm}0,5$$

 $D_{
m H_2SO_4}$ изменяется с температурой по уравнению

$$D_{\rm H_2SO_4} = 2.9 \cdot 10^{-7} \exp \left(- \frac{12000 \pm 1000}{RT} \right) \, .$$

В табл. 1 приведены произведения $k_{\theta\phi\phi}C^{0}_{\text{H}_2\text{SO}_4}$ при различных температурах и концентрациях серной кислоты в растворе.

Таким образом, процесс деструкции пленок ПЭТФ в водных растворах серной кислоты описывается уравнением

$$C_{n} = M_{\text{H}_{2}\text{SO}_{4}}^{4} \exp\left(-20000/RT\right) t \times \left\{1 - \frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \left[1 - \exp\left(-(2n+1)^{2} \frac{\pi^{2}t}{l^{2}} 2, 9 \cdot 10^{-7} \exp\left(-\frac{12000}{RT}\right)\right] \times \frac{l^{2}}{(2n+1)^{2}\pi^{2}t^{2}, 9 \cdot 10^{-7} \exp\left(-(12000/RT)\right)},\right\}$$
(8)

которое позволяет количественно прогнозировать хемостойкость ПЭТФ в широком интервале температур, концентраций серной кислоты и времени. При выводе уравнения использовали эмпирическое соотношение $(k_{2\Phi\Phi}C_{12SO_4}^0)^0 = M_{12SO_4}^4$, где M_{12SO_4} — молярная концентрация серной кислоты в растворе.

Институт химической физики Академии наук СССР Москва

Поступило 30 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Современные проблемы физической органической химии, М., 1967, стр. 195.