УДК 666.266.5/9

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

А. И. БЕРЕЖНОЙ, В. И. ИВАНОВА, академик Н. В. БЕЛОВ

РОЛЬ ОКИСЛОВ RO В ФОРМИРОВАНИИ МИКРОСТРУКТУРЫ ЗАКРИСТАЛЛИЗОВАННЫХ ЛИТИЕВОАЛЮМОСИЛИКАТНЫХ СВЕТОЧУВСТВИТЕЛЬНЫХ СТЕКОЛ

Микроструктура ситаллов наряду с их химическим составом и режимом термообработки исходного стекла оказывает существенное влияние на свойства этих материалов. Характер микроструктуры фотоситаллов зависит не только от химического состава, режима термообработки, но и от экспозиции облучения светочувствительного стекла. В данной работе с помощью рентгенографического и электроино-микроскопического анализов исследовали влияние 1-10 мол. % RO (где RO — BeO, MgO, CaO, ZnO, SrO, CdO и BaO), вводившихся взамен SiO₂, на микроструктуру закристаллизованного светочувствительного стекла известного состава $\binom{1}{2}$.

Основными кристаллическими фазами в фотоситаллах с различным содержанием ВеО были дисиликат и метасиликат Li, а также кварцеподобный твердый раствор β -эвкриптита, содержащий, возможно, бериллий (³). В образцах фотоситалла, имеющих до 6 мол.% ВеО, в качестве основных фаз обнаружены дисиликат Li и твердый раствор β -эвкриптита. С увеличением содержания ВеО от 6 до 11 мол.% содержание дисиликата Li уменьшалось, а метасиликата Li — увеличивалось. В образцах с 11—15 мол.% ВеО были найдены только метасиликат Li и твердый раствор β -эвкриптита. Степень кристаллизации всех бериллийсодержащих фотоситаллов лежала в пределах 70-80%.

Магнийсодержащие фотоситаллы обладали тонкокристаллической и равномернозернистой микроструктурой, причем кристаллы были более мелкими в фотоситаллах с более высокой концентрацией серебра $(0,094\% \, \mathrm{AgNO_3})$ по сравнению с фотоситаллами с $0,06\% \, \mathrm{AgNO_3}$. Эти фотоситаллы содержали метасиликат и дисиликат Li, кварцеподобный твердый раствор β -эвкриптита, содержащий, по-видимому, MgO, а в образцах с 8 и 9 мол. $\% \, \mathrm{MgO} - \beta$ -сподумен. В качестве дополнительной фазы в образцах с 5—9 мол. $\% \, \mathrm{MgO}$ найден в небольшом количестве энстатит, доля которого возрастала с увеличением концентрации MgO. Степець кристаллизации всех фотоситаллов с MgO составляла $90 \pm 10\%$.

Кальцийсодержащие литиевоалюмосиликатные фотоситаллы имели крупнозернистую микроструктуру с размерами кристаллов, достигающими нескольких десятков микрон (рис. 1). Основными кристаллическими фазами были твердый раствор β-кварца («силика 0») и метасиликат Li, допол-

нительной фазой в образцах с 4-7 мол. % СаО был волластонит.

Цинкосодержащие фотоситаллы отличались весьма тонкокристаллической равномернозернистой микроструктурой с размерами кристаллов менее 1μ (рис. 2). Фотоситаллы состояли из твердого раствора β-эвкриптита, содержащего, по-видимому, Zn, дисиликата и метасиликата Li. Кроме того, в образцах с 6, 7 и 8 мол. % ZnO был найден β-сподумен и одна неидентифицированная фаза. С увеличением концентрации ZnO количество дисиликата Li уменьшалось, а метасиликата Li — возрастало. Степспь кристаллизации составляла 68—78%.

Микроструктура стронцийсодержащих фотоситаллов существенно отличалась от рассмотренных ранее и характеризовалась выделением повой фазы, возможно алюмостронциевого силиката $SrAl_2Si_2O_8$, удлиненные

призматические кристаллы которого появлялись уже при 1 мол. % SrO и достигали размеров в несколько микрон, когда эта фаза становилась преобладающей (5). Рентгеноструктурный анализ порошков показал присутствие во всех стронцийсодержащих фотоситаллах в качестве основной кристаллической фазы метасиликата Li и дополнительной — р-кварца. Исключение составляли образцы с 2 и 4 мол. % SrO, в которых найден кварцеподобный твердый раствор р-эвкриптита с высоким содержанием SiO₂, а в качестве дополнительной фазы — метасиликат Li. В образцах с 5 и 6 мол. % SrO дополнительными фазами были р-кварц и дисиликат Li.

Кадмийсодержащие литиевоалюмосиликатные стекла с добавкой серебра и церия оказались несветочувствительными. Это полностью согласуется с результатами электронно-микроскопического исследования микроструктуры этих фотоситаллов, которая отличалась очень большими по сравнению с обычными фотоситаллами размерами кристаллов в виде сферолитов, достигающих в диаметре нескольких десятков микрон. На рис. З показаны только отдельные части этих крушных, часто лучеобразных сферолитов.

Барийсодержащие фотоситаллы обладали весьма тонкокристаллической плотной микроструктурой с размерами кристаллов менее 0,1 μ (°). Это согласуется с высокой светочувствительностью исходных стекол. Как показали результаты электропно-микроскопического и рентгеноструктурного апализа, фотоситаллы с 5—10 мол.% ВаО обнаруживали в качестве основной кристаллической фазы, наряду с метасиликатом Li, высокотемпературный и низкотемпературный цельзиан $\beta = \text{BaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$. В образцах с 1—4 мол.% ВаО основными кристаллическими фазами были α - и β -кварц, метасиликат Li и β -сподумен. Дополнительными фазами во всех образцах являлись α - и β -кварц, следы дисиликата Li и β -сподумена. Как и в случае цинкосодержащих фотоситаллов, введение в некоторые составы даже незначительных количеств ВаО, например 2 мол.%, приводило к выделению β -сподумена, что очень желательно для уменьшения коэффи-

циента теплового расширения фотоситаллов.

Для того чтобы дать более или менее правильное объяснение того сложного влияния, которое оказывает химико-минералогический состав кристаллических фаз и характер микроструктуры на важнейшие свойства фотоситаллов литиевоалюмосиликатной системы с добавкой окислов RO и без пих, необходимо особо подчеркнуть возможность образования в этой системе непрерывного ряда кварцеподобных твердых растворов различных форм кремнезема, таких как β-кварц, кристобалит, тридимит, китит. Так, Бергером (7) было установлено, что некоторые кристаллические алюмосиликаты, состоящие из тетраэдров SiO₄ и AlO₄, подобны по своей структуре той или другой кристаллической модификации чистого кварца. Образование таких насыщенных производных кварда с плотноупакованной структурой можно представить себе как результат замещения в структурной сетке Si⁴⁺ на Al³⁺. При этом для сохранения электронейтральности необходимо, чтобы вакансии, существующие во внутренних полостях сетки, были заполнены катионами больших размеров, в первую очередь, ионами Li+ и Mg²⁺ (⁸⁻¹⁰). Для предотвращения инверсии и получения стабильных твердых растворов необходимо, чтобы в этих полостях сетки находился минимум один катион на восемь тетраэдров, хотя состав, соответствующий стехиометрическому β -эвкриптиту (LiAlSiO₄), допускает такое заполнение своей структуры, при котором один катион приходится на два тетраэдра (3). Большое количество стекол, содержащих в качестве основных компонентов SiO_2 , $LiAlO_2$, $MgAl_2O_4$ и др., почти полностью кристаллизуются в однородный в-кварцевый твердый раствор. Некоторые из таких растворов, например магнийсодержащие β-эвкриптиты, устойчивы до комнатной температуры.

Таким образом, можно считать, что обнаруженные с помощью рентгеноструктурного анализа в продуктах кристаллизации исследованных светочувствительных стекол кристаллические фазы β-сподумен и β-эвкриптит представляют собой на самом деле кварцеподобные твердые растворы β -эвкриптита («сплика О») и β -сподумена («сплика К»), среди которых могут быть и такие, которые по стехиометрическому составу соответствуют соединениям β -эвкриптиту и β -сподумену. Существование твердых растворов подтверждено также нашими последними работами по рентгенографическому исследованию тонкой структуры литиевоалюмосиликатных фотоситаллов с добавками RO и без них ($^{1}, ^{2}, ^{4-6}, ^{11}$). Структура самого β -эвкриптита подобна структуре высокотемпературной формы кварца и представляет собой плотноупакованную производную β -кварца, в которой половина ионов Si^{4+} замещена на Al^{3+} , а псевдооктаэдрические вакансии внутри полостей структурной сетки заполнены ионами Li^{+} .

Что касается двухвалентных ионов, то некоторые из них, например, Be²⁺ и Zn²⁺, могут в определенном количестве не только впедряться во внутрешние полости структурной сетки β-кварца, но и непосредственно замещать ионы Si4+, расположенные в центрах тетраэдров. Однако существование твердых растворов в этом случае определяется в основном замещением ионами Al3+ понов Si4+. Наиболее предпочтительный порядок встранвания различных ионов в тетраэдрическую сетку следующий: Si⁴⁺, Be²⁺, Al³⁺, Zn²⁺, в то время как псевдооктаэдрические вакантные позиции внутри полостей структурной сетки будут заполняться в таком порядке: ${\rm Li}^+, {\rm Mg}^{2+}, {\rm Zn}^{2+}, {\rm Al}^{3+}$ (3). Окислы ZnO и ${\rm Al}_2{\rm O}_3$, входят в структуру β -кварцевых твердых растворов либо в виде $Zn(AlO_2)_2$, либо в виде Al^{3+} в центрах тетраэдров сетки, модифицированной ионом Zn²⁺, который в этом случае находится в полости сетки, занимая октардрическую позицию. Было установлено, что тетраэдрическую позицию занимают преимущественно поны, радиус которых лежит в пределах от 0,3 до 0,5 Å, в то время как в псевдооктардрическую позицию входят ионы радиусом 0.5-0.8 Å (3). Al³⁺ и Zn²⁺ могут находиться в любой из этих позиций, однако, для того, чтобы заставить Zn2+ войти в структурную сетку, т. е. запять тетраэдрическую позицию, необходим дефицит Al³⁺. Последний же, в свою очередь, может входить в полости структурной сетки β-кварцевого твердого раствора только при избыточных концентрациях ионов Al³⁺ (³).

На основании этих данных можно предположить, что из исследованных нами двухвалентных ионов только Be^{2+} и Zn^{2+} могут впедряться в центры тетраэдров в структуре кварцеподобных твердых растворов β -овкриптита. Ионы Mg^{2+} и Al^{3+} , если они находятся в псевдооктаэдрической позиции в полости структурной сетки, способствуют увеличению теплового расширения фотоситаллов, а поны Li^+ и Zn^{2+} — его незначительному уменьшению. Таким образом, переменный состав и количественное содержание кварцеподобных твердых растворов β -эвкриптита — основных кристаллических фаз, образующихся при термообработке литиевоалюмосиликатных светочувствительных стекол различных составов, и характер формирующейся микроструктуры являются основными факторами, опредеформирующейся микроструктуры являются основными факторами, опредеформирующейся микроструктуры являются основными факторами, опредеформирующейся при раста правиненных стекол различных составов, и характер

ляющими свойства синтезированных фотоситаллов.

Обобщая влияние окислов RO на формирование микроструктуры и типы выделяющихся кристаллических фаз в закристаллизованных литисвоалюмосиликатных стеклах, можно найти и сходство, и различие в механизме действия этих окислов. Общей закономерностью является увеличение содержания метасиликата Li и уменьшение дисиликата Li с повышением концентрации RO от 1 до 10 мол. % и появление новых фаз — силикатов или алюмосиликатов соответствующих окислов металлов второй группы. Так, в фотоситаллах с 5—10 мол. % ВаО был найден цельзнан, в других фотоситаллах обнаружены неидентифицированные фазы, по-видимому, силикаты или алюмосиликаты окислов Ве, Sr и Zn, которые иногда можно было видеть на электронных микрофотографиях в работах (5) и (6) рис. 1 и 5, а также на рис. 16.

Таким образом, введение RO в литиевоалюмосиликатные светочувствительные стекла препятствует перекристаллизации при высоких температурах метасиликата Li в дисиликат за счет того, что все большая часть SiO_2 расходуется на образование силикатов двухвалентных металлов. Это подтверждается и наблюдавшимся увеличением скоростей растворения продуктов высокотемпературной кристаллизации соответствующих свето-

чувствительных стекол с RO.

Если добавка BeO, MgO, ZnO и BaO весьма благоприятно сказалась на формировании тонкокристаллической микроструктуры фотоситалла, то введение CaO, CdO и в меньшей степени SrO приводило к образованию крупнокристаллической микроструктуры, часто состоящей из радиальнолучистых сферолитов диаметром до нескольких десятков микрон. В случае с CdO это можно объяспить полной потерей светочувствительности исходных стекол. Причину образования крупных кристаллов в микроструктуре фотоситаллов с CaO и SrO следует искать, по-видимому, в заметно больших радиусах ионов Ca²⁺ и Sr²⁺, составляющих 1,06 и 1,27 Å соответственно по сравнению с 0.31 Å для Be^{2+} и 0.82 Å для Zn^{2+} . Ионы Ca^{2+} и Sr^{2+} не могут входить в состав кварцеподобных твердых растворов β-эвкриптита, а образуют, по всей вероятности, несовместимые кристаллические фазы что и приводит к разрыхлению микроструктуры и росту крупных кристаллов. Правда, поп Ва2+ имеет еще больший радиус, равный 1,43 Å, но образование микрокристаллической структуры в барийсодержащих фотоситаллах является следствием высокой светочувствительности исходных стекол, обусловленной повышенной поляризуемостью ионов Ba²⁺.

В некоторых фотоситаллах при введении повышенных количеств RO, например, 8—9 мол. % MgO, 6—8 мол. % ZnO, а в барийсодержащих фотоситаллах уже при 2 мол. % ВаО обнаруживали β-сподумен, выделение которого, по нашему мнению, можно объяснить тем, что из-за образования силикатов или алюмосиликатов двухвалентных металлов не вся Li₂O входит в состав силикатов Li, часть ее расходуется на образование β-сподуме-

па или его кварцеподобных твердых растворов типа «силика К».

Поступило 10 I 1973

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Бережной, А. С. Красников, Н. А. Ерохов, ДАН, 186, № 1, 142 (1969). ² А. И. Бережной, А. С. Красников. Журн. Всесоюзн. хим. общ. им. Д. И. Менделеева. 16, № 4, 476 (1971). ³ G. H. Beall, В. R. Кагstetter, Н. L. Rittler, J. Am. Ceram. Soc., 50, № 4, 181 (1967). ⁴ А. И. Бережной, А. С. Красников, Электроннан техника, сер. 14. Материалы (неорганические диэлектрики), в. 9 (25), (53) (1969). ⁵ А. И. Бережной, В. И. Иванова и др., ДАН, 205, № 6, 1335 (1972). ⁶ А. И. Бережной, В. И. Иванова и др., ДАН, 209, № 6 (1973). ⁷ М. Ј. Виегдег, Ат. Міпегаlодіяt, 39, 7—8, 600 (1954). ⁸ Н. G. Winkler, Acta crystallogr., 1, 1, 27 (1948). ⁹ R. Roy, E. F. Osborn, J. Ат. Сегат. Soc., 71, 6, 2086 (1949). ¹⁰ W. Schreyer, J. F. Schairer, Zs. Kristallogr., 116, 60 (1961). ¹¹ А. И. Бережной, А. С. Красников, Неорганические материалы 7, 1, 160 (1971).

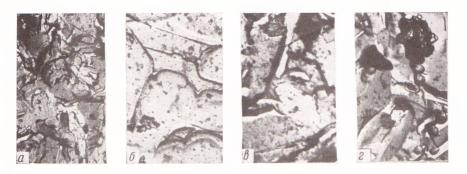


Рис. 1. Электронные фотографии микроструктуры кальцийсодержащих фотоситаллов. $a, \ 6, \ e, \ z$ — без CaO и содержащих 1, 2 и 4 мол.% CaO соответственно

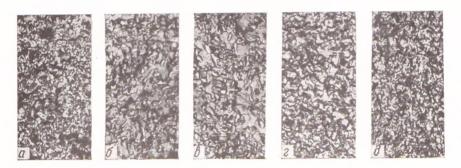


Рис. 2. Электронные фотографии микроструктуры цинксодержащих фотоситаллов: a-s-7 мол.% ZnO; $\partial-8$ мол.% ZnO

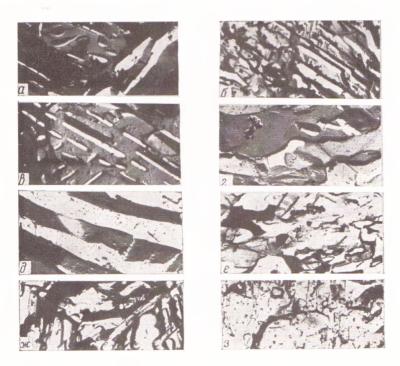


Рис. 3. Электронные фотографии микроструктуры продуктов кристаллизации кадмийсодержащих литиевоалюмосиликатных стекол: a-s-1, 2, 3, 4, 5, 6, 8 и 9 мол.% CdO соответственно