УДК 539.89 ФИЗИКА

В. И. АЛЕКСАНДРОВ, А. А. КАМИНСКИЙ, Г. В. МАКСИМОВА, академик А. М. ПРОХОРОВ, С. Э. САРКИСОВ, А. А. СОБОЛЬ, В. М. ТАТАРИНЦЕВ

ИССЛЕДОВАНИЕ СТИМУЛИРОВАННОГО ИЗЛУЧЕНИЯ ИОНОВ Nd^{3+} В КРИСТАЛЛАХ НА ПЕРЕХОДЕ ${}^4F_{^3/2} \rightarrow {}^4I_{^{13}/2}$

Люминесценция ионов Nd^{3+} в подавляющем большинстве сред обусловлена переходами с уровней метастабильного состояния ${}^4F_{^3/2}$ на компоненты четырех мультиплетов нижайшего терма 4I . С переходом ${}^4F_{^3/2} \rightarrow {}^4I_{^{11}/2}$ связана самая интенсивная люминесценция ($\sim 60\,\%$), на линиях которой в обычных условиях широкополосного оптического резонатора на волнах $\sim 1,06\,\mu$ в возбуждается стимулированное излучение (с.и.). Определенный интерес

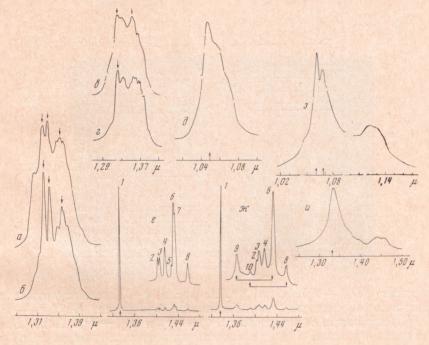


Рис. 1. Снектры люминесценции кристаллов $CaF_2 - YF_3$ (5 вес.%) — Nd^{3+} (2 вес.%) (a, δ) , $Ca_2Y_5F_{19} - Nd^{3+}$ (1 вес.%) $(e-\delta)$, $Ca_5(PO_4)_3F - Nd^{3+}$ (4,5 вес.%), $c \perp F$) (e, ∞) , $ZrO_2 - Y_2O_3$ (10 вес.%) — Nd^{3+} (0,5 вес.%) (s, u), обусловлениые переходами ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ $(a-z, e, \infty, u)$ и ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ (∂, s) , при 300° K $(a, e, \partial, \infty - u)$ и 77° K (δ, z, e) . Прямыми скобками на рис. 1, ∞ отмечено расщепление состояния ${}^4F_{3/2}$

как в научном, так и в прикладном аспекте представляет получение генерации неодимовых сред и на линиях других переходов, в частности на ${}^4F^3_{/2} \rightarrow {}^4I^{_{13}}_{/2}$, с длиной волны $\sim 1,35~\mu$. С этой целью нами были исследованы кристаллы ${\rm CaF_2-YF_3}$, ${\rm Ca_2Y_5F_{19}}$, ${\rm Ca_5(PO_4)_3F}$, ${\rm ZrO_2-Y_2O_3}$ и ${\rm HfO_2-Y_2O_3}$ с примесью понов ${\rm Nd^{3+}}$. Стимулированное излучение этих соединений на линиях основного перехода ${}^4F^3_{/2} \rightarrow {}^4I^{_{11}}_{/2}$ было зарегистрировано ранее в работах (${}^{1-3}$).

Кубические кристаллы иттрофлюорита ($CaF_2 - YF_3 - Nd^{3+}$) с пространственной группой $O_h^5 - Fm3m$ относятся к смещанным многоцентровым системам (4). По данным работы (5) граница устойчивости твердых растворов в системе $CaF_2 - YF_3$ со структурой иттрофлюорита простирается до ~ 37.5 мол. 0 0 YF_3 . На рис. 1, a, b0 показаны спектры люминесценции кристалла $CaF_2 - YF_3$ (5 0 вес. 0 0) — Nd^{3+} (5 2 вес. 0 0), обусловленные переходом $^4F_{^3/2} \rightarrow ^4I_{^{13}/2}$. Линии, на частотах которых был обнаружен эффект с.и. * 9, на рис. 4 9 указаны стрелками.

В системе $CaF_2 - YF_3$, кроме иттрофлюорита, при соотношении компонентов 2:5 образуется (5) устойчивое соединение $Ca_2Y_5F_{19}$ со структу-

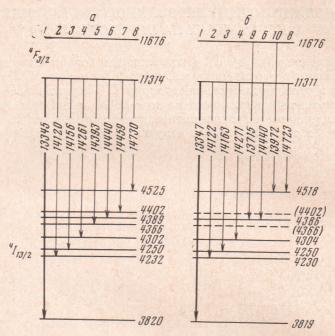


Рис. 2. Схемы кристаллического расщепления мультиплетов ${}^4F_{3/2}$ и ${}^4I_{13/2}$ ионов ${\rm Nd}^{3+}$, входящих в центр типа M, в ${\rm Ca}_5({\rm PO}_4)_3{\rm F}$ для 77° К (a), 300° К (δ) . Положение уровней указано в см $^{-1}$, а переходы между ними приведены в Å. Жирпыми стрелками обозначены индуцированные переходы

рой тизонита $(D_{6h}^3-P6_3/mcm)$ **. На рис. 1, $s-\partial$, демонстрируются неполяризованные спектры люминесценции кристалла $Ga_2Y_5F_{19}-Nd^{3+}$ (1 вес.%), связанные с переходами ${}^4F^3_{/2} \rightarrow {}^4I^{11}_{/2}$ и ${}^4F^3_{/2} \rightarrow I^{13}_{/2}$. Ионы Nd^{3+} в этом соединении также входят в состав активаторных центров (а.д.) раз-

личной структуры.

Фторапатит $Ca_5(PO_4)_3F$ имеет гексагональную структуру с пространственной группой $C_{6h}^2-P6_3/m$. Из-за локальной компенсации избыточного заряда нонов Nd^{3+} в $Ca_5(PO_4)_3F$ возможно образование нескольких типов а.ц. Спектральные свойства этого соединения при различных способах компенсации заряда Nd^{3+} рассмотрены в работе (7). Исследуемые в настоящей работе кристаллы $Ca_5(PO_4)_3F$ синтезировались без дополнительных компенсирующих примесей и содержали около 1,5 вес. % ионов Nd^{3+} (0,25 ат. %). Образцы, оптические свойства которых определялись пре-

* Генерацию кристаллов ${\rm CaF_2-YF_3-Nd^{3+}}$ при 300° К на переходе ${}^4F_{3/2} \to {}^4I_{13/2}$ наблюдали также авторы работы (6).

^{**} Генерацию при 300° К кристаллов $\mathrm{Ca_2Y_5F_{19}-Nd^{3+}}$ на переходе ${}^4F_{^3/_2} \rightarrow {}^4I_{^{11/_2}}$ впервые получили Ю. К. Воронько, Р. Г. Микаэлян, В. В. Осико и В. Т. Удовенчик.

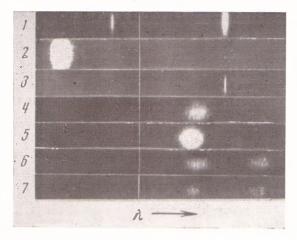


Рис. 3. Спектры генерации ОКГ при 300° К: на основе кристаллов $I-\text{СаF}_2-\text{YF}_3$ (5 вес. %) — Nd^3+ (2 вес. %), $2-\text{Ca}_2\text{Y}_5\text{F}_{19}-\text{Nd}^3+$ (1 вес. %), $2-\text{Ca}_5(\text{PO}_4)_3\text{F} \text{Nd}^3+$ (1,5 вес. %), $c\perp F$), $4-\text{ZrO}_2-\text{Y}_2\text{O}_3$ (10 вес. %) — Nd^3+ (0,5 вес. %), $5-\text{HfO}_2-\text{Y}_2\text{O}_3$ (10 вес. %)); ОКГ с к.а.с. на основе $6-\text{ZrO}_2-\text{Y}_2\text{O}_3-\text{Nd}^3+$ (0,5 вес. %); ОКГ с к.а.с. на основе $6-\text{ZrO}_2-\text{Y}_2\text{O}_3-\text{Nd}^3+$ $4-\text{NaCaCeF}_6-\text{Nd}^3+$ (1 вес. %), $7-\text{HfO}_2-\text{Y}_2\text{O}_3 \text{Nd}^3+$ $4-\text{NaCaCeF}_6-\text{Nd}^3+$ (1 вес. %). Реперная линия— с $\lambda_p=10561,5$ А

К статье И. С. Клименко, Е. Г. Матинян и Г. В. Скроцкого, стр. 571

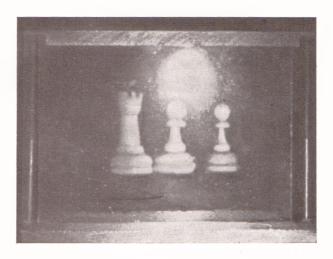


Рис. 1. Фотография квазиосевого восстановленного изображения, формируемого безопорной голограммой сфокусированного изображения

К статье В. К. Крицкой, Г. В. Курдюмова и В. А. Ильиной, стр. 577

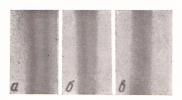


Рис. 1. Рентгенограммы закаленной стали У-10: a — непосредственно после закалки, b — после электронного облучения и последующего отпуска при комнатной температуре в течение 2,5 лет, b — то же без облучения

имущественно одними а.ц.-центрами типа M (см. $(^7)$), имели девяностоградусную ориентацию. Кристаллы с нулевой ориентацией (оптическая c и геометрическая F оси совпадали) содержали центры двух типов: M и N. На рис. $1, e, \mathcal{H}$ показаны спектры люминесценции кристалла $\mathrm{Ca}_5(\mathrm{PO}_4)_3\mathrm{F} - \mathrm{Nd}^{3+}$ ($c\perp F$), связанные с переходом $^4F^5_{/2} \to ^4I^{13}_{/2}$. Как видно, излучение на этом переходе происходит главным образом на частоте линии ~ 13345 Å. Чтобы показать более слабые линии этих спектров, их записали при большей мощности излучения источников возбуждения люминесценции. На рис. 2 приведены схемы кристаллического расщепления мультиплетов $^4F^3_{/2}$ и $^4I^{13}_{/2}$ с идентификацией обнаруженных индуцированных переходов. Для

Таблица 1

		×	${}^4F_{3/2} \rightarrow {}^4I_{13/2}$		⁴ F _{3/2} → ⁴ I _{11/2}		
Кристалл (длина, диаметр, мм; ориентировка) ^а	T, °K	TJIOM MCER	yr, µ6	Еп, дж В	Δνητοм: cm-1	λ _Γ . μ ^Γ	En, The B
CaF ₂ — YF ₃ (1—10 вес.%) — Nd ³⁺ (0,2—6 вес.%) $l = 39$; п $\phi = 5$	300	0,48 ^д	1,3270 1,3370	12 10	70	1,0461 ^e 1,0540	6
	77	0,48 ^д	1,3585 1,3255 1,3380 1,3600	20 40 70 200	120 45 55 60	1,0632	7 - - -
Ca ₂ Y ₅ F ₁₉ — Nd ³⁺ (1 Bec.%) $l = 21$; $\phi = 5$; $\angle cF = 90$ °	300 77	0,36	1,3190 1,3525 1,3200	150 180 250	80 100 25	1,0498	100
Ca ₅ (PO ₄) ₃ F — Nd ³⁺ (1,5 Bec.%) $l = 17$; $\phi = 6-10$; $\angle cF = 0$ ii 90° ZrO ₂ — Y ₂ O ₃ (Bec.%) — Nd ³⁺ (0,5 Bec.%) $l = 17$; $\phi = 5$	300 77 300	0,25 0,25 0,45	1,3347 1,3345 1,3320	2 8 42	4 2 130	1,0630	1,5
$HfO_2 - Y_2O_3$ (10 Bec.%) — Nd^{3+} (0,5 Bec.%) $l = 15$; $\phi = 5$	300	0,45	1,3305	48	130	1,0604	25

а Для анизотропных кристаллов характеристики с.и. зависят от взаимной ориентации их геометрической дазерной F и оптической с осей. ⁶ Точность измерения длины волны ± 10 А. ^В Значения E_Π пересчитаны на длину кристаллов. ^Р Точность измерения длины волны ± 1 А π Приведенное значение $\tau_{\pi NOM}$ соответствует концентрации ионов $\tau_{\pi NOM}$ около 0,5 вес.% ⁶ Регистрируется только с кристаллами $\tau_{\pi NOM}$ (~1 вес.%) — $\tau_{\pi NOM}$ (~0,5 вес.%) (11).

удобства сопоставления линий на спектрах с переходами на схемах они связаны нумерацией. Анализ низкотемпературных спектров показал, что все восемь наблюдаемых их линий характеризуются концентрационной нечувствительностью. Согласно теории, число компонент мультиплета $^4I_{^{13}/2}$ не должно превышать семи.

Кубические кристаллы $ZrO_2 - Y_2O_3$ и $HfO_2 - Y_2O_3$ с ионами Nd^{3+} обладают очень близкими люминесцентными и генерационными параметрами. Для первого из них на рис. 1, s, u, демонстрируются спектры люминесценции для переходов ${}^4F^3_{/2} \rightarrow {}^4I^{11}_{/2}$ и ${}^4F^3_{/2} \rightarrow {}^4I^{13}_{/2}$, полученные при 300° K.

Измеренные значения люминесцентного времени жизни $(\tau_{\text{люм}})$ метастабильного состояния ${}^4F_{^3/2}$ ионов Nd^{3+} в перечисленных кристаллах, а также ширины их линий люминесценции $(\Delta \nu_{\text{люм}})$, на волнах которых обна-

ружено с.и., сведены в табл. 1.

В опытах по возбуждению с.и. применялись осветительные системы эллиптического сечения с импульсными ксеноновыми лампами типа ИФП-400. В низкотемпературных измерениях кристаллы устанавливались в трубчатый стеклянный криостат, где они непосредственно контактировали с жидким азотом. Во всех случаях оптический конфокальный резонатор создавался внешними сферическими (R=576 мм для $\lambda \cong 1,06$ μ и R=

= 600 мм для $\lambda \cong 1,35~\mu$) интерференционными зеркалами, имеющими максимальное отражение на волнах генерации (пропускание менее 1%). При 77° К связь кристаллов с зеркалами осуществлялась посредством специальных кварцевых световодов. Спектральный состав с.и. в области 1,06 μ (переход ${}^4F^3_{/2} \rightarrow {}^4I^n_{/2}$ регистрировался фотографически и.-к. пленкой И-1070 при помощи дифракционного спектрографа ДФС-8 с дисперсией $\sim 5,9$ Å/мм (см. рис. 3), а на волнах $\sim 1,35~\mu$ он изучался фотоэлектрическим методом с применением фотодиода InAs ($\tau = 10^{-6}$ сек.), монохроматора (разрешение $\sim 3~\text{см}^{-1}$) и широкополосного осциллографа. С использованием этой же экспериментальной техники измерялись и пороги возбуждения (E_{π}). Все определенные генерационные характеристики приводятся в табл. 1.

Для возбуждения генерации кристаллов $ZrO_2 - Y_2O_3$ и $HfO_2 - Y_2O_3$ с ионами Nd^{3+} на волнах других линий перехода ${}^4F_{^3/2} \rightarrow {}^4I^{11}/_2$ был применен метод спектроскопии с.и. с использованием $OK\Gamma$ с комбинированной активной средой (к.а.с.) (9 , 10). Второй средой был выбран кристалл α -NaCaCeF₆ — Nd^{3+} . Если при 300° К в обычном $OK\Gamma$ кристалл $ZrO_2 - Y_2O_3 - Nd^{3+}$ генерирует на волне 10608 Å с шириной линии $\Delta v_r \cong 20$ см⁻¹ (при трехкратном превышении энергии возбуждения над $E_{\rm H}$, то спектр с.и. генератора с к.а.с. содержит две линии 10608 и 10673 Å (см. рис. 3, спектр 6). Для кристалла $HfO_2 - Y_2O_3 - Nd^{3+}$ в обычных условиях с.и. происходит на волне 10604 Å ($\Delta v_r \cong 16$ см⁻¹), а в $OK\Gamma$ с к.а.с. на 10604 и 10666 Å (см. рис. 3, спектр 7).

Авторы благодарят Ю. К. Воронько и В. В. Осико за обсуждение ре-

зультатов работы.

Физический институт им. П. Н. Лебедева и Ипститут кристаллографии им. А. В. Шубникова Академии наук СССР Москва Поступило 10 IV 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Х. С. Багдасаров, Ю. К. Воронько и др., Кристаллография, 10, 746 (1965). ² К. В. Steinbruegge, R. С. Ohlmann, R. Маzelsky, Bull. Am. Phys. Soc., 12, 90 (1967). ³ В. И. Александров, Ю. К. Воронько и др., ДАН 199, 1282 (1971). ⁴ А. А. Каминский, В. В. Осико, Неорганические материалы, 6, 629 (1970). ⁵ Б. П. Соболев, Е. Г. Инполитов и др., там же, 1, 362 (1965). ⁶ Б. Я. Забокрицкий, А. Д. Мануильский и др., Укр. физ. жури., 17, 501 (1972). ⁷ Г. В. Максимов, А. А. Соболь, Неорганические материалы, 8, 1077 (1972). ⁸ А. А. Каминский, Г. V. V. Osiko et al., Phys. Lett., 22, 419 (1966). ⁹ А. А. Каминский, Письма ЖЭТФ, 7, 260 (1968). ¹⁰ А. А. Каминский, ЖЭТФ, 56, 83 (1969).