УДК 519.45

MATEMATUKA

М. К. ВАЛИЕВ

примеры универсальных конечно-определенных групп

(Представлено академиком П. С. Новиковым 24 Х 1972)

1. В работе (i) Г. Хигманом доказано, что любая группа G с рекурсивно-перечислимыми множествами образующих и определяющих соотношений (р.п.о. группа) вкладывается в конечно-определенную (к.о.) группу K_{6} . Из этого легко вытекает существование к.о. группы U, универсальной для всех к.о. групп в том смысле, что любая к.о. группа вкладывается в U(в качестве U можно взять K_{G} , где G — свободное произведение всех к.о. групп). Доказательство Г. Хигмана конструктивно в том смысле, что из конструктивного описания группы G можно в принципе извлечь описание для K_{a} , однако это построение настолько необозримо, что практически сделать это невозможно. В связи с этим М. Д. Гриндлингером поставлена задача $((^2), 1.17)$ явного построения универсальной к.о. групны. В настоящей заметке выписываются образующие и определяющие соотношения для одной такой группы. Эта группа (группа U_i) имеет 14 образующих и 42 определяющих соотношения. В заключение указываются некоторые возможности модификации построения группы U_1 с целью получения других примеров универсальных групп.

2. Введем некоторые обозначения. Слово w в образующих a_1, a_2, \ldots обычно будем записывать в виде $w(a_1, a_2, \ldots)$. Если группа G задана образующими a_1, a_2, \ldots и определяющими соотношениями $r_1(a_1, a_2, \ldots) = r_2(a_1, a_2, \ldots) = \ldots = 1$, то будем писать $G = \{a_1, a_2, \ldots; r_1 = r_2 = \ldots = 1\}$. Через $\{G, b_1, b_2, \ldots; R_1 = R_2 = \ldots = 1\}$ будем обозначать группу, которая получается из G добавлением образующих b_1, b_2, \ldots и соотношений $R_1(a_1, a_2, \ldots; b_1, b_2, \ldots) = R_2(a_1, a_2, \ldots; b_1, b_2, \ldots) = \ldots = 1$. Равенство

слов в группе G будем обозначать через =.

Пусть $G' = \{G, t; t^{-1}at = \varphi(a), a \in A\}$, где φ задает изоморфизм подгруппы A группы G на некоторую подгруппу из G. Тогда t называется правильной проходной буквой над G (3). Для G' справедлива

 Π емма 1 (4). Пусть $w(a_1,a_2,\ldots;t)=1$, где $a_1,a_2,\ldots-$ образующие группы G. Тогда либо w не содержит вхождений t^e , $\varepsilon=\pm 1$, u w=1, либо

w содержит подслово одного из видов $t^{-1}at$, $t\phi(a)t^{-1}$, $a \in A$.

Доказательство. Если положить $t=rs^{-1}$, то группа G' вкладывается в свободное произведение K групп $\{G,r\}$ и $\{G,s\}$ с объединением подгрупп $\{G,r^{-1}Ar\}$, $\{G,s^{-1}\phi(A)s\}$ в соответствии с изоморфизмом, тождественным на G и отображающим $r^{-1}ar$ на $s^{-1}\phi(a)s$, $a \in A$ ((5), см. также (6), стр. 247). Сделаем в слове w подстановку rs^{-1} вместо t. Получим слово w' из K вида $g_0(rs^{-1})^{\varepsilon_1}g_1(rs^{-1})^{\varepsilon_2}\ldots (rs^{-1})^{\varepsilon_k}g_k$, где g_i —слова из G. Тогда w'=1 и из теоремы о нормальной форме для свободных произведений с объединенной подгруппой (см. (6), стр. 223) легко вытекает, что либо w'—слово из G и w=1, либо w' содержит подслово одного извидов $sr^{-1}ars^{-1}$, $rs^{-1}\phi(a)sr^{-1}$, т.е. w содержит подслово вида $t^{-1}at$ или

Из леммы 1 легко вытекают следующие утверждения.

Лемма 2 (3 , 5). G вкладывается в G'.

 $t\varphi(a)t^{-1}, a \in A.$

Лемма 3 (1). Подгруппа $\{G, t^{-1}Gt\}$ группы G' является свободным произведением групп $G, t^{-1}Gt$ с объединением подгрупп $t^{-1}At$, $\varphi(A)$.

3. Перейдем к построению универсальной группы U_i . Построение будет проведено в несколько этапов. Сначала выберем конкретное представление некоторой универсальной р.п.о. группы G с образующими a_i , b_i , $i=1,2,\ldots$

Пусть $H = \{h_1, h_2, \ldots; r_1 = r_2 = \ldots = 1\}$ — произвольная группа. Из теоремы IV работы (7) легко вытекает, что H вкладывается в группу с образующими a, b и соотношениями, которые получаются из r_1, r_2, \ldots подстановкой слова $baba^{8i+8}baba^{8i+9}\ldots baba^{8i+15}$ вместо каждой из букв h_i . Отсюда следует, что любая группа вкладывается в группу с образующими a, b и соотношениями, не содержащими вхождений a^{-1} , b^{-1} , так как можно считать, что r_1 , r_2 , ... не содержат вхождений h_i^{-1} . Поэтому нам достаточно построить группу, универсальную для всех к.о. групп с указапным выше свойством.

Пусть функция τ буквам a_i , b_i ставит в соответствие цифры 1, 2 следующим образом: $\tau(a_i)=2$, $\tau(b_i)=1$. Тогда любое натуральное число j можно записать как слово w_i^i в любом из алфавитов $\{a_i, b_i\}$, используя соответствие τ для расшифровки w_i^i как записи в двоичной системе счисле-

иня. Пусть $i=\sum_{j=0}^{n} \mathbf{v}_{j} \cdot 2^{j}; \quad \mathbf{v}_{j}=0, \ 1; \ j=1, \ 2, \ \ldots, \ l.$ Обозначим через D(i)

конечное множество равенств $\{w_j^i = 1 | v_{j-1} = 1\}$, через G_i – группу $\{a_i, b_i; D(i)\}$ и через G – свободное произведение групп G_i . Из сказанного выше следует, что G является универсальной для всех к.о. групп.

4. Вкладывая группу G в группу с образующими a, b, как было указано выше (принимая a_i в качестве h_{2i-1} , b_i — в качестве h_{2i}), получаем группу G_1 . Множество определяющих соотношений для G_1 обозначим через R.

5. Определим некоторую полугруппу П. Образующими ее будут буквы a, b, \tilde{a}, p, q , а определяющие соотношения имеют следующий вид (в них буквы u_1, u_2 обозначают соответственно слова $baba^8baba^9 \dots baba^{15}, babbabababa^2 \dots baba^6baba^7$): 1) $b^3aba^{16} = b^3ab\tilde{a};$ 2) $\tilde{a}a = a\tilde{a};$ 3) $\tilde{a}baba^{16} = bab\tilde{a};$ 4) $\tilde{a}b^2 = b^2ab^2;$ 5) $b^4 = pb^4;$ 6) $b^2ap = pb^2a;$ 7) $u_2p = u_1q;$ 8) $au_1p = pu_2;$ 9) $b^2u_1p = b^2q;$ 10) $qu_2 = u_2q;$ 11) $aq(b^2a)^2 = aqb^2a;$ 12) $qb^4 = pb^4;$ 13) $aqb^2ab^4 = pb^4;$ 14) $b^2q(b^2a)^2 = b^2q.$

Если в П можно вывести слово w' из слова w с помощью вывода, у которого любое промежуточное слово имеет не более одного вхождения букв \tilde{a} , p, q (причем только одной из них), то это будем обозначать как $w \models w'$.

Связь полугруппы Π с группой G_1 ясна из следующей леммы (в ней через \tilde{b} обозначено слово bab, через h — слово b^2 и через Ω — слово h^2qhah^2).

Лемма 4. 1) $w(a, \vec{b}, h^2) \vdash \Omega$ тогда и только тогда, когда w имеет

 $\mathfrak{su}\partial h^2w'(a,b)h^2$, $\mathfrak{r}\partial\mathfrak{e}\ w'\in R$.

2) если $w(a, b) \vdash \Omega$ и w не принадлежит подполугруппе $\{a, b, h^2\}$, то w имеет вид $w'(a, b)ab^2ab^4$.

Доказательство леммы довольно просто, но громоздко, и мы его опустим. Заметим только, что система соотношений 1)-4), если рассматривать их как направленные слева направо, по слову вида $h^2w\left(ba^{16i+8}ba^{16i+9}\ldots ba^{16i+15},\ ba^{16i}ba^{16i+1}\ldots ba^{16i+7}\right)h^2$ «выдает» слово $h^2w\left(u_1,\ u_2\right)\left(ha\right)^ih^2$, соотношения 5)-14) «проверяют», кодирует ли слово $w\left(u_1,\ u_2\right)$ один из элементов множества D(i) (если считать, что $u_1,\ u_2$ кодируют соответственно буквы $b_i,\ a_i$).

Замечание. При некотором усложнении остальных соотношений из полугруппы Π можно убрать соотношения 4)-5). При этом несколько

осложняется также доказательство леммы, аналогичной лемме 4.

6. Теперь мы можем выписать все образующие и определяющие соотношения группы U_{ι} . Образующими ее будут $a, b, \tilde{a}, p, q, c, d, e, t, \alpha, \beta, \gamma$,

a', b', а соотношения имеют следующий вид (в (7-20) Σ_i и Γ_i обозначают соответственно левые и правые части определяющих соотношений полугруппы Π):

(1-6)
$$d^{15}\xi = \xi d$$
, $e\xi = \xi e^{15}$, $\xi c = c\xi$, $\xi = a$, $\xi =$

$$(7-20) \ d^{-i}cd^{i}\Sigma_{i} = \Gamma_{i}e^{i}ce^{-i}, \ i = 1, 2, \dots, 14;$$

(21-24)
$$c\alpha = \alpha c$$
, $d\alpha = \alpha d$, $ct = tc$, $et\alpha^{-1} = t\alpha^{-1}e$;

(25)
$$\beta^{-1}\Omega t\alpha^{-1}\Omega^{-1}\alpha\beta = \Omega t\alpha^{-1}\Omega^{-1}\alpha;$$

$$(26-27)$$
 $c\beta = \beta c$, $d\beta = \beta d$;

$$(28-31)$$
 $\xi \eta = \eta \xi$, где $\xi = a, b; \eta = a', b';$

$$(32-33)$$
 $\gamma^{-1}\xi\xi'\gamma=\xi$, где $\xi=a,bab$;

(34-38)
$$\gamma^{-1}\beta^{-1}\xi\beta\gamma = \beta^{-1}\xi\beta$$
, где $\xi = a, bab, b^4, t, \alpha$;

(39-40)
$$\gamma^{-1}\alpha^{-1}\xi\alpha\gamma = \alpha^{-1}\xi\alpha$$
, где $\xi = a, b$;

$$(41-42) \quad \gamma^{-1}b^4\gamma = b^4, \quad \gamma^{-1}t\gamma = t.$$

Обозначим через G_2 группу с образующими a, b, \tilde{a} , p, q, c, d, e и соотношениями (1-20), через G_3 — группу, получаемую из G_2 добавлением образующих α , t и соотношений (21-24), через G_4 — группу, получаемую из G_3 добавлением образующей β и сотношений (25-27).

Заметим, что группа G_2 почти совпадает с группой Γ_2 из (8), если взять в качестве исходной полугруппы для построения Γ_2 полугруппу П. Для G_2 имеет место следующая лемма, доказательство которой по существу

можно извлечь из доказательства теоремы 1 работы (8).

Пемма 5. Если P и Q — слова из полугруппы Π , то $P \Vdash Q$ тогда и только тогда, когда существуют слова L(c, d) и R(c, e) такие, что LQR = P.

 G_{2} 7. Используя лемму 5, для группы G_{3} можно доказать следующее утверждение.

Лемма 6.

$$\{h^2w(a, b)h^2t\alpha^{-1}h^{-2}w^{-1}(a, b)h^{-2}\alpha | w \in R\} = \{\Omega t\alpha^{-1}\Omega^{-1}\alpha, c, d\} \cap^2 \{h^2, a, \tilde{b}, \alpha, t\}.$$

Напомним, что R обозначает множество определяющих соотношений для G_1 .

Приведем набросок доказательства леммы. Включение — можно доказать довольно легко, используя леммы 4, 5. Докажем обратное включение.

Прежде всего, заметим, что t можно рассматривать как правильную проходную букву над группой G_2 , получающейся из G_2 добавлением образующей α и соотношений (21—22) (легко видеть, что подгруппы $\{c,e\}$ и $\{c,\alpha^{-1}e\alpha\}$ обе являются свободными ранга два и поэтому изоморфны).

Теперь пусть w = w', где w имеет вид $w_0(a, \tilde{b}, h^2, \alpha) t^{\epsilon_1} w_1(a, \tilde{b}, h^2, \alpha) t^{\epsilon_2} \dots t^{\epsilon_k} w_k$, и w' имеет вид $w_0'(c, d) (\Omega t \alpha^{-1} \Omega^{-1} \alpha)^{\epsilon_1'} w_1'(c, d) \times (\Omega t \alpha^{-1} \Omega^{-1} \alpha)^{\epsilon_2'} \dots w_l'(c, d)$. Нам надо показать, что w может быть записано в образующих $h^2 v h^2 t \alpha^{-1} h^{-2} v^{-1} h^{-2} \alpha$, $v \in R$. Докажем это индукцией по k+l.

Если k+l=0, то легко видеть, что w=w'=1. Если $k+l\neq 0$, то по лемме 1 в слове $w^{-1}w'$ должно быть подслово z одного из видов $t^{-1}\widetilde{w}t$, где

 $\widetilde{w} \in \{c, e\}$ или $t\widetilde{w}t^{-1}$, где $\widetilde{w} \in \{c, \alpha^{-1}e\alpha\}$.

Рассмотрим первый случай (второй случай аналогичен). z может входить в $w^{-1}w'$ одним из трех способов: либо z — подслово из w^{-1} , либо z — подслово из w', либо им является подслово $t^{-1}w_0^{-1}w_0'\Omega t$. В первом случае, как и в базисе индукции, z=1. Во втором случае после несложных вы-

кладок получаем равенство $w=w^{\prime\prime}$ ($\Omega t \alpha^{-1} \Omega^{-1} \alpha,\ c,\ d$), где $w^{\prime\prime}$ имеет l-2

вхождения буквы t.

8. Легко показать, что подгрупна $\{a, b, \alpha, t\}$ групны G_4 свободна, следовательно, свободны также подгрупны $F = \{a, \tilde{b}, h^2, t, \alpha\}$ и $F' = \{a, \tilde{b}, h^2, t, \alpha\}$

 $t, \alpha^{-1}a\alpha, \alpha^{-1}b\alpha$.

Используя утверждение 2) леммы 4, для F' можно доказать следую-

щий аналог леммы 6.

Лемма 6'. $\{h^2w(a, b)h^2t\alpha^{-1}h^{-2}w^{-1}(a, b)h^{-2}\alpha | w \in R\} = \{\Omega t\alpha^{-1}\Omega^{-1}\alpha, c, d\} \cap F'.$

Из лемм 6, 6', используя леммы 2, 3, выводим следующие утверждения. Лемма 7. B G_4 $cnpase \partial_{\Lambda} uso$ pase + croso

 $\{w \mid w \in R\} = \{h^2, t, \alpha^{-1}a\alpha, \alpha^{-1}b\alpha, \beta^{-1}F\beta\} \cap \{a, \tilde{b}\}.$

Лемма 8. Если $w \in \{F', \beta^{-1}F\beta\}$ и w = 1, то проекция w на алфавит образующих a, b равна единице в группе G_1 .

Из леммы 8, используя заключительные рассуждения доказательства

теоремы 1 из (1), получаем нашу основную теорему.

T е о р е м а. Γ руппа G_1 вкладывается в U_1 u, следовательно, U_1 является универсальной для всех к.о. групп.

9. Замечания. 1) Используя замечание из п. 5, можно выписать

универсальную группу с 12 образующими и 40 соотношениями.

2) С помощью некоторой модификации рассуждений из (9, 10) можно построить полугруппу с 2 образующими и 3 определяющими соотношениями, которую можно использовать для построения универсальной группы с 2 образующими и 27 определяющими соотношениями (при этом используется теорема 2 из (8) для сокращения числа соотношений с 30 до 27).

3) Выбирая несколько иное кодирование букв a_i , b_i (типа $h_i \rightarrow a^i b a^i c^i b c^i$) для получения группы G_i и несколько усложняя дальнейшие построения, можно доказать существование универсальной группы с 57 соотношениями, каждое из которых имеет длину, не большую, чем 20.

4) Метод построения группы U_1 можно применить для доказательства упомянутой в начале работы теоремы Хигмана. Для этого вместо полугруппы П нужно использовать полугруппу Π_G , связанную с машиной Тьюринга T_G , вычисляющей частичную характеристическую функцию множества слов, равных единице в G. В этом случае дальнейшую часть конструкции можно значительно упростить.

Институт математики Сибирского отделения Академии наук СССР Новосибирск Поступило 21 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Higman, Proc. Roy. Soc. A, 262, № 1311 (1961). ² Коуровская тетрадь, Новосибирск, 1969. ³ П. С. Новиков, Тр. Матем. инст. АН СССР, 44 (1955). ⁴ J. L. Britton, Ann. Math., 77, № 1 (1963). ⁵ G. Higman, B. H. Neumann, H. Neumann, J. Lond. Math. Soc., 24 (1949). ⁶ А. Г. Курош, Теория групп, М., 1967. ⁷ R. C. Lyndon, Math. Ann., 166, 3 (1966). ⁸ B. В. Борисов, Матем. заметки, 6, № 5 (1969). ⁹ Г. С. Цейтин, Тр. Матем. инст. АН СССР, 52 (1958). ¹⁰ Ю. В. Матиясевич, ДАН, 173, № 6 (1967).