ХИМИЯ

Л. М. ТРЕЙГЕР, Г. Л. РАБИНОВИЧ, Г. Н. МАСЛЯНСКИЙ

ПРЕВРАЩЕНИЯ *н*-ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ ПРИ ВЗАИМОДЕЙСТВИИ С ВОДЯНЫМ ПАРОМ НА РОДИЕВОМ КАТАЛИЗАТОРЕ

(Представлено академиком Б. А. Казанским 20 VII 1972)

Родий является одним из наиболее активных катализаторов гидрогенолиза парафиновых углеводородов (¹, ²). Значительно медленнее протекает на этом катализаторе их дегидроциклизация. Так, в работе (³) было показано, что при пропускании *н*-гексана в смеси с водородом над алюмородиевым катализатором выход продуктов гидрогенолиза значительно превышает выход бензола. Замена водорода на азот способствовала лишь увеличению коксоотложения на катализаторе.

Ранее было найдено (4), что при взаимодействии толуола с водяным паром на алюмородиевом катализаторе

$$C_6H_5CH_3 + 2H_2O \rightarrow C_6H_6 + CO_2 + 3H_2$$

скорость разрыва связи $C_{ap}-C_{a\pi\kappa}$ в 2,5-2-7 раза меньше, чем для реакции гидродеалкилирования

$$C_6H_5CH_3 + H_2 \rightarrow C_6H_6 + CH_4$$
.

Следовало ожидать, что уменьшение деструктивной активности родия и весьма незначительное коксообразование в присутствии водяного пара создадут более благоприятные условия для дегидроциклизации парафиновых углеводородов, чем при разбавлении их водородом или азотом. Высказанное предположение подтвердилось в первых же опытах, проведенных с н-гептаном.

Представленные в табл. 1 результаты были получены при температуре 460° , скорости подачи *н*-гептана 1 час⁻¹ и молярном отношении H_2 : углеводород или H_2 O: углеводород, равном 8; катализатор 0.6% Rh на γ -Al₂O₃.

Выход катализатора, вес. % Быход ароматических, мол. % бензола толуола суммарный м-C₇H₁₆ + H₂ 4,3 1,4 0,6 2,0 н-C₇H₁₆ + H₂O 60,3 10,2 4,5 14,7

Таблина 1

В среде водорода *н*-гептан почти полностью подвергался гидрогенолизу до метана. Замена водорода па водяной пар привела к значительному увеличению выхода катализата и, следовательно, к уменьшению глубины расщепления *н*-гептана. Выход ароматических углеводородов при этом увеличился приблизительно в 7 раз.

Подобный эффект специфичен только для алюмородиевого катализатора; водяной пар, даже при небольшой концентрации в зоне реакции, тормозит реакцию дегидроциклизации и-гептана при ее осуществлении на

алюмоплатиновом катализаторе (5). Были изучены превращения нормальных гексана, гептана и октана с водяным паром.

В табл. 2 приведены результаты опытов, проведенных с парафиновыми углеводородами при 460° и молярном отношении вода: углеводород, равном 8. Объемную скорость подачи углеводородов варьировали в пределах 1—4 час⁻¹ (соответствующие значения скорости подачи V выражены в ммолях углеводорода, поданного в 1 мин. на 1 г родиевого катализатора).

Таблица 2

V, mmon/mnH·r	Гл у би- на пре- враще- ния, %	Выход ароматических углево- дородов на пропущенный пара- финовый, мол. %				Выход арома- тических уг- леводородов на превращен-	Coctab Lasa, Most. /6				
		бензол	тол у- Ол	аромати- ческие С ₈	сум- мар- ный	ный парафи- новый, мол. %	H ₂	CO	CO ₂	CH₄	эта н и выше
н-Гексан											
$0,95 \\ 0,43 \\ 0,22$	$\begin{bmatrix} 21,2\\44,6\\61,3 \end{bmatrix}$	3,9 8,1 12,0	$\begin{bmatrix} 0,3\\0,7\\0,8 \end{bmatrix}$		4,2 8,8 12,8	$\left \begin{array}{c} 19,8 \\ 19,8 \\ 20,9 \end{array}\right $	76,1 74,7 70,6	$9,1 \\ 8,3 \\ 6,9$	$\begin{array}{c c} 13,6 \\ 13,3 \\ 15,7 \end{array}$	1,0 3,3 6,1	0,2 0,4 0,7
<i>н</i> -Гептап											
$\begin{bmatrix} 0,76 \\ 0,38 \\ 0,19 \end{bmatrix}$	18,0 32,4 51,8	$\begin{bmatrix} 4,1 \\ 6,9 \\ 10,2 \end{bmatrix}$	$\begin{bmatrix} 1,4\\3,2\\4,5 \end{bmatrix}$		5,5 $10,1$ $14,7$	30,6 31,2 28,4	78,4 73,8 71,5	$9,6 \\ 9,2 \\ 9,6$	$ \begin{array}{c c} 10,6 \\ 13,6 \\ 12,6 \end{array} $	$\begin{vmatrix} 1,0\\3,1\\5,5 \end{vmatrix}$	0,4 0,3 0,8
н-Оқтан											
$0,68 \\ 0,34 \\ 0,17$	$\begin{bmatrix} 13,8 \\ 27,9 \\ 42,3 \end{bmatrix}$	$\begin{bmatrix} 2,6 \\ 5,0 \\ 6,5 \end{bmatrix}$	$\begin{bmatrix} 1,3 \\ 2,3 \\ 3,5 \end{bmatrix}$	0,8 1,1 1,7	4,7 8,4 11,7	$\begin{bmatrix} 34,2\\ 30,2\\ 27,7 \end{bmatrix}$	78,5 $72,6$ $70,4$	$\begin{vmatrix} 8,3\\10,1\\8,9 \end{vmatrix}$	12,2 13,8 15,5	$ {0,7} \\ {2,8} \\ {4,8} \\ {4,8} \\$	$0,2 \\ 0,7 \\ 0,4$

Продуктами превращения парафиновых углеводородов были водород, окислы углерода, метан и ароматические углеводороды, в основном бензол.

В изученных условиях парафиновые углеводороды реагировали по двум основным направлениям: конверсии (расщепления) с водяным паром

$$\mathrm{C}_{n}\mathrm{H}_{2n+2} + (m+n)\,\mathrm{H}_{2}\mathrm{O} \rightarrow m\mathrm{CO}_{2} + (n-m)\,\mathrm{CO} + (2n+m+1)\,\mathrm{H}_{2}$$

и дегидроциклизации.

Из рассмотрения кинетических кривых на рис. 1 следует, что скорость расщеплення n-парафиновых углеводородов с водяным паром снижается по мере увеличения их молекулярного веса. Относительные начальные скорости расщепления парафиновых углеводородов и бензола (по данным работы (6)) составляют: C_6H_6 1,0; n- C_6H_{14} 1,4; n- C_7H_{16} 0,7; n- C_8H_{18} 0,5.

Следует отметить, что иная зависимость имеет место при конверсии с водяным наром n-парафиновых углеводородов на никелевом катализаторе. Скорость расщепления возрастает с увеличением молекулярного веса углеводородов (7).

Дегидроциклизация *н*-гексана и *н*-гептана протекает с практически одинаковыми скоростями, превышающими скорость дегидроциклизации *н*-октапа (рис. 1). Соотношение начальных скоростей расщепления парафиновых углеводородов с водяным паром и их дегидроциклизации составляет ~5 для *н*-гексана и 3—3,5 для *н*-гептана и *н*-октапа. Следовательно, в изученных условиях реакция расщепления парафиновых углеводородов являлась превалирующей. Как это следует из рассмотрения табл. 1, выход бензола на превращенный *н*-гексан составлял ~20 мол. % и мало зависел от глубины его превращения. Дегидроциклизация *н*-гептана и *н*-октана протекала более селективно; выход ароматических углеводородов в этом

131

случае составлял ~30 мол. %. Некоторое снижение селективности реакции дегидроциклизации *н*-гептана и *н*-октана с увеличением глубины превращения можно объяснить расщеплением ароматических углеводородов при взаимолействии с водяным паром.

На рис. 2 графически представлена зависимость выходов ароматических углеводородов на прореагировавшие n-гентан и n-октан от глубины их превращения. Экстраноляцией найдено, что при предельно малой глубине превращения выходы ароматических углеводородов составляют (в мол.%):

из н-гептана 25% бензола, 10% толуола;

из *н*-октана 20% бензола, 10% толуола, 5% ароматических C_8 .

Обращает на себя винмание тот факт, что выходы ожидаемых при дегидроциклизации гептана и октана ароматических углеводородов намного меньше выхода продуктов их деалкилирования.

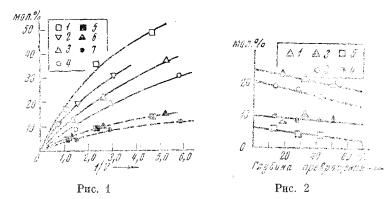


Рис. 1. Зависимость степени расщения и дегидроциклизации углеводородов от величины 1/V. Степень расщениения n-гексана (1), бензола (2), n-гентана (3), n-октана (4); степень дегидроциклизации n-гексана (5), n-гентана (6), n-октана (7)

Рис. 2. Зависимость выходов ароматических углеводородов на прореагировавине n-гентан и n-октан от глубины их превращения. Выход бензола из n-гентана (I), из n-октана (I); выход толуола из n-гентана (I) и I-октана (I); выход ароматических I0 из I-октана (I2).

При конверсии *n*-гептана и *н*-октана с водяным паром на родиевом катализаторе из более низкомолекулярных парафиновых углеводородов получается практически лишь метан. Поэтому образование бензола из *н*-гептана не может быть объяснено дегидроциклизацией гексана, который отсутствует в продуктах реакции. Аналогичный вывод может быть сделан и для *n*-октана. Наличие бензола в продуктах реакции при предельно малой глубине превращения *n*-гептана свидстельствует о том, что образующийся при дегидроциклизации толуол подвергается деалкилированию без промежуточной десорбции с поверхности катализатора. Подобный вывод о механизме образования бензола подтверждается также и тем, что начальная скорость деалкилирования толуола (по данным (6)) примерно в 5 раз превышает начальную скорость образования ароматических углеводородов из *n*-гептана при осуществлении реакции в тех же условнях.

Большими скоростями реакции деалкилирования алкилбензолов можно также объяснить значительное содержание толуола и бензола в продуктах превращения *н*-октана.

Опыты проводили в установке проточного типа (4,6) при атмосферном давлении. Длительность опыта составляла 3 часа. На протяжении опыта заметного снижения активности катализатора не наблюдали. Катализатор готовили пропиткой активной у-окиси алюминия раствором хлористого родия в 2% уксусной кислоте. В реактор загружали от 3 до 42 г предва-

рительно восстановленного водородом при температуре 500° катализатора. Состав продуктов реакции определяли методом газожидкостной хроматографии.

Поступило 17 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ч. Кембол, Тр. IV Международн. конгр. по катализу, **2**, «Наука», 1970, стр. 5.
² J. L. Carter, J. А. Cusumano, J. H. Sinfelt, J. Catalysis, **20**, 223 (1971).
³ И. В. Гостунская, Н. С. Горячевидр., ДАН, **203**, № 1, 103 (1972). ⁴ Г. Л. Рабинович, Г. Н. Маслянский, Л. М. Трейгер, Кинетика и катализ, **12**, № 6, 1567 (1971). ⁵ W. P. Hettinger, C. D. Keith et al., Ind. and Eng. Chem., **47**, 719 (1955). ⁶ Л. М. Трейгер, Г. Л. Рабинович, Г. Н. Маслянский, Нефтехимия, **12**, № 1, 29 (1972). ⁷ Т. R. Phillips, J. Mulhall, G. E. Turner, J. Catalysis, **5**, № 3, 233 (1969).