МАТЕМАТИЧЕСКАЯ ФИЗИКА

В. А. ФАТЕЕВ, А. С. ШВАРЦ

ОДЕВАЮЩИЕ ОПЕРАТОРЫ В КВАНТОВОЙ ТЕОРИИ ПОЛЯ

(Представлено академиком В. С. Владимировым 24 V 1972)

Рассмотрим трансляционно инвариантный гамильтониан $H=H_{\scriptscriptstyle 0}+g\,V$, где

$$H_{0} = \int \omega(\mathbf{k}) a^{*}(\mathbf{k}) a(\mathbf{k}) d\mathbf{k}, \qquad (1)$$

$$V = \sum \int V_{m,n}(\mathbf{k}_{1}, \dots, \mathbf{k}_{m} | \mathbf{l}_{1}, \dots, \mathbf{l}_{n}) a^{*}(\mathbf{k}_{1}) \dots a^{*}(\mathbf{k}_{m}) a(\mathbf{l}_{1}) \dots a(\mathbf{l}_{n}) d^{m} \mathbf{k} d^{n} \mathbf{l},$$

$$V_{m,n} = v_{m,n}(\mathbf{k}_{1}, \dots, \mathbf{k}_{m} | \mathbf{l}_{1}, \dots, \mathbf{l}_{n}) \delta(\mathbf{k}_{1} + \dots + \mathbf{k}_{m} - \mathbf{l}_{1} - \dots - \mathbf{l}_{n}),$$

 $a^*(\mathbf{k}),\ a(\mathbf{k})$ — символы, удовлетворяющие каноническим коммутационным соотношениям (ССR). Функции ω и $v_{m,n}$ предположим гладкими, функция ω должна быть строго выпуклой и удовлетворять условию $\omega(\mathbf{k}_1+\mathbf{k}_2)<<\omega(\mathbf{k}_1)+\omega(\mathbf{k}_2),$ а функции $v_{m,n}$ должны достаточно быстро убывать на бесконечности (например, быстрое любой степени). В случае, когда есть поляризация вакуума (т. е. при условии $v_{m,0}\not\equiv 0$), гамильтониан H не определяет самосопряженного оператора в пространстве R фоковского представления ССR; мы будем поэтому рассматривать H как формальное выражение, не придавая ему операторного смысла. Однако для гамильтонианов вида (1) можно дать определение (перенормированной) матрицы рассеяния, а также указать диаграммную технику для ее вычисления по теории возмущений, причем все члены ряда по степеням g оказываются конечными (см. $\binom{1}{2}$).

Все утверждения этой заметки (кроме теоремы 4) доказаны в рамках теории возмущений. В частности, совпадение двух операторов понимается как совпадение разложений этих двух операторов по степеням g в любом порядке по g. Все рассматриваемые нами объекты можно при желании рассматривать как формальные степенные ряды по g, никаких предположений о сходимости этих рядов не делается.

Рассмотрим случай, когда выражение H определяет самосопряженный оператор в пространстве R. Оператор D, действующий в пространстве R, будем называть одевающим оператором, если существует такой оператор $H_{\text{кв}}$ вида $\int \varepsilon(\mathbf{k}) a^*(\mathbf{k}) a(\mathbf{k}) d\mathbf{k}$, что матрица рассеяния S гамильтониана H может быть представлена в виде

$$S = \lim_{t \rightarrow \infty; \; t_0 \rightarrow -\infty} \exp\left\{iH_{\text{\tiny KB}}t\right\} D^{-1} \exp\left\{-iH\left(t-t_0\right)\right\} D \exp\left\{-iH_{\text{\tiny KB}}t_0\right\}$$

(предел операторов, действующих в пространстве R, здесь и дальше понимается в смысле сходимости матричных элементов относительно обобщенного базиса $a^*(\mathbf{k}_1) \dots a^*(\mathbf{k}_n) \Theta$, через Θ обозначен фоковский вакуум).

Теорема 1. Пусть оператор D_s удовлетворяет условиям: 1) вектора $D_s\Theta$ и $D_sa^*(\mathbf{k})\Theta$ являются собственными векторами гамильтониана H_0+gV (точнее, $D_sa^*(\mathbf{k})\Theta$ — обобщенный собственный вектор, нормированный на δ -функцию); 2) оператор D_s может быть представлен в виде $\exp A$ или

 $:\exp A:,\ r\partial e$

$$A = \sum \int A_{m,n}(\mathbf{k}_1, \ldots, \mathbf{k}_m | \mathbf{l}_1, \ldots, \mathbf{l}_n) a^*(\mathbf{k}_1) \ldots a^*(\mathbf{k}_m) a(\mathbf{l}_1) \ldots a(\mathbf{l}_n) d^m \mathbf{k} d^n \mathbf{l},$$

$$A_{m,n} = \sum_{s=1}^n g^s a_{m,n}^s(\mathbf{k}_1, \ldots, \mathbf{k}_m | \mathbf{l}_1, \ldots, \mathbf{l}_n) \delta\left(\sum \mathbf{k}_i - \sum \mathbf{l}_j\right),$$

функции $a_{m,n}^s$ являются гладкими функциями и для каждого s только конечное число этих функций отлично от нуля.

 $Tor\partial a$ оператор \check{D}_{g} является одевающим оператором ∂ ля гамильто-

ниана $H_0 + gV$.

Для того чтобы сформулировать аналог теоремы 1, пригодный и при наличии поляризации вакуума, следует ввести обрезание гамильтониана H по объему. Обрезав гамильтониан H по объему (например, с помощью замены интегралов в выражении (1) на суммы по решетке T_{α} с шагом $2\pi\Omega^{-4}$), мы получим выражение H^{α} , которое, как правило, задает самосопряженный оператор в пространстве фоковского представления ССR:

$$[a_{\mathbf{k}}, a_{\mathbf{l}}] = [a_{\mathbf{k}}^*, a_{\mathbf{l}}^*] = 0; \quad [a_{\mathbf{k}}, a_{\mathbf{l}}^*] = \delta_{\mathbf{l}}^{\mathbf{k}}; \quad \mathbf{k}, \mathbf{l} \in T_{\Omega}$$

(более подробные определения используемых здесь понятий можно найти в статье $(^2)$, обозначениям которой мы следуем). Семейство операторов D° , действующих в пространстве R_{\circ} (и зависящих от параметра Ω), будем называть семейством одевающих операторов, если существует такой оператор $H_{\text{кв}}^{\circ}$ вида $\sum_{\bullet} \varepsilon^{\circ}(\mathbf{k}) a_{\mathbf{k}}^{\bullet} a_{\mathbf{k}} + C^{\circ}$, что оператор

$$i_{\Omega}\exp\left\{iH_{\scriptscriptstyle{\mathrm{KB}}}^{\Omega}t\right\}(D^{\Omega})^{-1}\exp\left\{--iH_{\scriptscriptstyle{\mathrm{KB}}}^{\Omega}(t-t_{0})\right\}\,D^{\Omega}\exp\left\{--iH_{\scriptscriptstyle{\mathrm{KB}}}^{\Omega}t_{0}\right\}i_{\Omega}^{*}$$

при $t \to \infty$, $t_0 \to -\infty$, $\Omega \to \infty$, $(|t|+|t_0|)\Omega^{-1/3} \to 0$ стремится к матрице рассеяния S (через i_{Ω} обозначено естественное вложение пространства R_{Ω} R

Теорема 2. Пусть операторы $D^{\alpha} = D_g^{\alpha}$ удовлетворяют условиям: 1) векторы $D^{\alpha}\Theta$ и $D^{\alpha}a_{\mathbf{k}}^{*}\Theta$, где $\mathbf{k} \in T_{\alpha}$, являются стационарными состояниями гамильтониана $H_0^{\alpha} + gV^{\alpha}$, причем $\|D^{\alpha}\Theta\| = \|D^{\alpha}a_{\mathbf{k}}^{*}\Theta\| = 1$; 2) оператор D^{α} может быть представлен в виде $D^{\alpha} = \exp A_{\alpha}$ или в виде $D^{\alpha} = \exp A_{\alpha}$; где A_{α} получается обрезанием по объему из оператора A, удовлетворяющего условиям теоремы 1.

Tогда операторы D^{lpha} образуют семейство одевающих операторов.

Утверждение теоремы остается справедливым, если в условии 2) считать, что $D^{\Omega} = \exp A_{\Omega}^{(n+m)} \ldots \exp A_{\Omega}^{(n+1)} : \exp A_{\Omega}^{(n)} : \ldots : \exp A_{\Omega}^{(1)} :$, где все операторы $A^{(1)}, \ldots, A^{(n+m)}$ удовлетворяют требованиям, наложенным в теореме на оператор A.

Следствие. Определения матрицы рассеяния, указанные в работах \mathcal{A} . \mathcal{A} . Фаддеева (1) и И. Я. Арефьевой (3), совпадают с обычным опреде-

лением (перенормированной) матрицы рассеяния.

В самом деле, эти определения сводятся к конкретному выбору одевающих операторов D^{α} , причем в (¹) оператор D^{α} записывается в виде $\exp A_{\alpha}$, а в (³) в виде $\exp A_{\alpha}$:, где A удовлетворяет условиям теоремы \mathbb{I} , $\mathrm{Teopema}$ а 3. Hycrb

$$b(\mathbf{k}) = \sum \int D_{m,n}(\mathbf{k} | \mathbf{k}_1, \dots, \mathbf{k}_m | \mathbf{l}_1, \dots, \mathbf{l}_n) a^*(\mathbf{k}_1) \dots a(\mathbf{l}_n) a^m \mathbf{k} d^n \mathbf{l}$$

— каноническое преобразование, коэффициентные функции которого имеют вид $D_{m,n} = \sum_{s} g^s b_{m,n}^s (\mathbf{k}_1,\ldots,\mathbf{k}_m | \mathbf{l}_1,\ldots,\mathbf{l}_n) \, \delta \left(\sum \mathbf{k}_i - \sum \mathbf{l}_j - \mathbf{k} \right)$, где

 $b_{m,n}^{\mathrm{s}}$ — гладкие функции, причем для каждого s только конечное число этих функций отлично от нуля.

Тогда матрица рассеяния гамильтониана вида (1) не меняется при

этом каноническом преобразовании.

Это означает, что подставив в гамильтониан H вместо символов $a^*(\mathbf{k})$, $a(\mathbf{k})$ выражения $b^*(\mathbf{k})$, $b(\mathbf{k})$ и приведя получившееся выражение к нормальной форме с помощью ССR, мы получим гамильтониан H, имеющий ту же матрицу рассеяния, что и гамильтониан H. Теорема 3 близка к теореме эквивалентности Чисхольма (4). Отметим, однако, что, как было выяснено в работе (5), доказательство Чисхольма имеет серьезные недостатки. Доказательство теоремы эквивалентности, указанное в (5), по существу не устраняет дефектов рассуждения Чисхольма и при этом содержит другие, еще более существенные пробелы.

Наметим доказательство теорем 4-3 с помощью некоторых теорем аксиоматической теории рассеяния (6). Будем называть о ператор ной реализацией гамильтопиана H гильбертово пространство \mathcal{H} , в котором действуют коммутирующие самосопряженные операторы энергии и импульса \hat{H} , $\hat{\mathbf{P}}$ и операторные функции $a(\mathbf{k},t)$, обобщенные по \mathbf{k} , такие, что $a^*(\mathbf{k},t)$, $a(\mathbf{k},t)$ удовлетворяют гейзенберговским уравнениям, которые можно формально написать по гамильтониану H и при фиксированном t подчинены ССR, операторы H и $\hat{\mathbf{P}}$ обладают следующими естественными свойствами:

$$e^{it\hat{H}t}a(\mathbf{k}, \tau)e^{-i\hat{H}t}=a(\mathbf{k}, \tau+t); \quad e^{-i\alpha\hat{\mathbf{p}}}a(\mathbf{k}, t)e^{i\alpha\hat{\mathbf{p}}}=e^{-i\alpha\mathbf{k}}a(\mathbf{k}, t),$$

а основное состояние Φ оператора \hat{H} является циклическим вектором семейства операторов $a^*(f,t)$, a(f,t), где $a(f,t)=\int f(\mathbf{k})a(\mathbf{k},t)\,d\mathbf{k};\ f\in\mathscr{S}.$ В случае, если формальный гамильтониан H не порождает поляризации вакуума, он (по крайней мере, в рамках теории возмущений) определяет самосопряженный оператор \hat{H} в фоковском пространстве, который вместе с операторами

$$\hat{\mathbf{P}} = \int \mathbf{k} a^*(\mathbf{k}) \, a(\mathbf{k}) \, d\mathbf{k}$$
 π $a(\mathbf{k}, t) = e^{i\hat{H}t} a(\mathbf{k}) \, e^{-i\hat{H}t}$

задает операторную реализацию гамильтониана И.

В общем случае операторную реализацию гамильтониана H можно построить, например, с помощью канонического преобразования, указанного Л. Д. Фаддеевым в (¹). При этом нужно воспользоваться следующим утверждением: если гамильтониан \tilde{H} получается из H с помощью канонического преобразования, то из операторной реализации ($\mathcal{H}, \hat{H}, \hat{P}, \tilde{\sigma}(\mathbf{k}, t)$) гамильтониана \tilde{H} можно получить операторную реализацию гамильтониана H, оставив \mathcal{H}, \hat{H} и \hat{P} прежними и заменив $\tilde{a}(\mathbf{k}, t)$ операторными обобщенными функциями $a(\mathbf{k}, t)$, выражаемыми через $\tilde{a}^*(\mathbf{k}, t)$, $\tilde{a}(\mathbf{k}, t)$ так же, как $b(\mathbf{k})$ через $a^*(\mathbf{k}), a(\mathbf{k})$.

По операторной реализации гамильтониана H построим алгебру \mathfrak{A} , порожденную операторами $a^*(f,t)$, a(f,t). Нетрудно проверить, что вместе с операторами энергии и импульса \hat{H} и $\hat{\mathbf{P}}$ алгебра \mathfrak{A} удовлетворяет условиям, наложенным в $(^6)$; следовательно, мы можем построить по этим объектам матрицу рассеяния. Эта матрица рассеяния совпадает с (перенормированной) матрицей рассеяния, построенной по гамильтониану H с помощью диаграмм Фейнмана. Если гамильтониан \hat{H} получается из H с помощью канонического преобразования, то алгебра \mathfrak{A} , порожденная операторами $\hat{a}^*(f,t)$, $\hat{a}(f,t)$, асимптотически коммутирует с алгеброй \mathfrak{A} и, значит, по теореме 2 статьи $(^6)$, матрицы рассеяния гамильтонианов H и \hat{H} совпадают. Это доказывает теорему 3. Теорема 1 вытекает из следующего утверждения, представляющего собой другую формулировку теоремы 4 статьи $(^6)$ (мы пользуемся обозначениями $(^6)$, считая, что существует только одно одночастичное состояние $\Phi(\mathbf{k})$).

Теорема 4. Пусть оператор D, действующий из пространства \mathcal{H}_{as} в пространство \mathcal{H} , переводит голый вакуум Θ в физический вакуум Φ ,

голое одночастичное состояние $a^*(\mathbf{k})\Theta - \mathbf{e}$ одночастичное состояние $\Phi(\mathbf{k})$ гамильтониана H и обладает следующим свойством «распадения корремяций» при $t \to \pm \infty$:

$$\langle A_1(\sigma_1) \dots A_n(\sigma_n) D\xi(t), D\xi(t) \rangle \approx \langle \widetilde{A}_1(\sigma_1) \dots \widetilde{A}_n(\sigma_n) \xi(t), \xi(t) \rangle,$$

 $\langle A_1(\sigma_1) \dots A_n(\sigma_n) D\Theta, D\xi(t) \rangle \approx \langle \widetilde{A}_1(\sigma_1) \dots \widetilde{A}_n(\sigma_n) \Theta, \xi(t) \rangle.$

c ошибкой, не превышающей $C_N \mathbf{v}_h^n(\sigma) \left(|t|^{-N} + d^{-N} \right)$ (здесь $A_i \in \mathfrak{A}_h$)

Tогда матрицы Mеллера S_{\pm} могут быть записаны в виде

$$S_{\pm} = \lim_{t \to +\infty} \exp\left\{iHt\right\} D \exp\left\{-iH_{as}t\right\}$$

 $(ecnu\ D-oграниченный\ oneparop,\ ro\ npeden\ можно\ cчитать\ сильным).$

С помощью теоремы 4 можно доказать также теорему 2 для случая гамильтонианов, не порождающих поляризации вакуума. В общем случае доказательство теоремы 2 сводится к этому частному случаю посредством фаддеевского преобразования. Перенос сформулированных выше результатов на фермиевский случай не вызывает затруднений.

Используя доказанные выше теоремы, можно указать также условия того, чтобы оператор был в естественном смысле in-одевающим или out-одевающим.

Пользуемся случаем выразить благодарность Л. Д. Фаддееву и И. Я. Арефьевой за интересные обсуждения.

Московский инженерно-физический институт

Поступило 4 V 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Д. Фаддеев, ДАН, **152**, 573 (1963). ² В. Н. Лихачев, Ю. С. Тюйкил, А. С. Шварц, Журн. теоретич. и матем. физ., **10**, № 1, 61 (1972). ³ И. Я. Арефьева, Журн. теоретич. и матем. физ., **14**, № 1, 3 (1973). ⁴ J. S. R. Chisholm, Nucl. Phys., **26**, 469 (1961). ⁵ S. Кашеfuchi, L. O' Raifeartaigh, A. Salam, Nucl. Phys., **28**, 529 (1961). ⁶ В. А. Фатеев, А. С. Шварц, Журп. теоретич. и матем. физ., **14**, № 2, 152 (1973).