УДК 513.83 <u>МАТЕМАТИКА</u>

г. п. амирджанов

ПЛОТНОСТЬ, ЧИСЛО СУСЛИНА И ТЕСНОТА ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 26 IV 1972)

Будем через s(X) обозначать плотность пространства X, а через c(X) — число Суслина. Полагаем, $cc(X) = \sup \{c(A) \colon A \subset X\}$. Определение тесноты t(X) пространства X см. в (¹). Понятие свободной последовательности взято нами из (²). Через l(X) будем обозначать $\sup \{A \colon A \subset X, A - \text{свободная последовательность в } X\}$. В одной из своих работ W. W. Сомfort ставит следующую задачу: охарактеризовать пространства, имеющие данный бикомпакт своим стоун-чеховским наростом. В теореме 1 исследуется этот вопрос. Метод построения свободной последовательности схолен с методом Λ . В. Архангельского из (²).

Теорема 1. Пусть Y — бикомпакт, $c(Y) \le \aleph_0$, $s(Y) > \mathfrak{c}$ и $Y = \beta X \setminus X$, тогда X — локально бикомпактное, псевдокомпактное пространство и $l(X) > \aleph_0$.

Доказательство. Поскольку $Y = \beta X \setminus X$ — бикомпакт, то, очевидно, X — локально бикомпактное пространство. Если X не псевдокомпактно, тогда, как показал W. W. Comfort в (3), $c(\beta X \setminus X) \ge c$, что противоречит пашей первоначальной посылке. Таким образом, X — локально бикомпактное, псевдокомпактное пространство.

Если бы в каждую окрестность U произвольной точки $y \in \beta X \setminus X$ можно было вписать бикомпакт B_v такой, что $\chi(B_v,Y) \leqslant \aleph_o$, $B_v \in U$ и $W(B) \leqslant \mathfrak{c}$, то тогда было бы возможно построить семейство $\gamma = \{B\}$, состоящее из бикомпактов счетного в Y характера, для каждого элемента $B \in \gamma$ выполнены следующие условия: $W(B) \leqslant \mathfrak{c}$ и $[\cup \{B: B \in \gamma\}] = \beta X \setminus X$. Тогда из леммы 6 из $(^2)$ вытекало бы, что $|\gamma| \leqslant \mathfrak{c}$ и, как показывают простые оценки, $\mathfrak{s}(Y)$ было бы не больше \mathfrak{c} , что противоречит нашим первоначальным предположениям. Таким образом, существуют такие точки $y \in \beta X \setminus X$ и ее окрестность U, удовлетворяющая следующим условиям: если $B \subset U$, B — бикомпакт, $\chi(B,Y) \leqslant \aleph_o$, то B не лежит в бикомпакте илотности \aleph_o .

Построим тенерь свободную последовательность, лежащую в X и имеющую длину \aleph_1 . Возьмем V — открытое в βX множество, для которого $V \cap (\beta X \setminus X) = U$. Определим для каждого $\alpha < \omega_1$ множества x_α , F_α , удовлетворяющие следующим требованиям: 1) F_α — бикомпакт, $\chi(F_\alpha, \beta X) \leq \aleph_0$ и $F_\alpha \subset V$. 2) $F_\alpha \cap (\beta X \setminus X) \neq \Lambda$, 3) $F_\alpha \subset F_\beta$ при $\alpha \leq \beta$, 4) $x_\alpha \in X$, 5) $x_\alpha \in F_\beta$ при $\alpha \geq \beta$, 6) $[\cup \{x_\beta\colon \beta \leq \alpha\}] \cap F_\alpha = \Lambda$. В качестве x_0 возьмем произвольную точку из X. Тогда из того факта, что βX — бикомпакт, следует существование бикомпакта Φ , для которого $\chi(\Phi, \beta X) \leq \aleph_0$ и $\Phi \subset V \setminus \{x_0\}$. Положим $F_0 = \Phi$. Пусть для всех $\alpha < \lambda < \omega_1$ мы уже построили x_α , F_α , удовлетворяющие условиям 1)-6). Возьмем $A = \{x_\alpha\colon \alpha < \lambda\}$ и пусть $[A]_{\beta X} = B$, тогда из того, что $[A] \leq \aleph_0$, получаем $[B] \leq 2^{\mathfrak{e}}$.

Положим $\Phi = \bigcap \{F_{\alpha} : \alpha < \lambda\}$. Условие 3) гарантирует нам, что $\Phi \neq \Lambda$, Φ — бикомпакт. Далее, из счетности $\chi(F_{\alpha}, \beta X)$ и неравенства $|\lambda| \leqslant \aleph_0$ получаем $\psi(\Phi, \beta X) \leqslant \aleph_0$, а затем из транзитивности характера для бикомпактов выводим неравенство $\chi(\Phi, \beta X) \leqslant \aleph_0$, $\Phi \subset F_{\alpha} \subset V$ для $\alpha < \lambda$. Теперь, поскольку для каждого $\alpha < \lambda$ $F_{\alpha} \cap (\beta X \setminus X) \neq \Lambda$ и F_{α} , $\beta X \setminus X$

бикомпактны, мы имеем, что $\Phi \cap (\beta X \setminus X) \neq \Lambda$. Положим $\Phi \cap (\beta X \setminus X) = F$. Гогда F — бикомпакт счетного в $\beta X \setminus X$ характера. Действительно, так как Φ есть G_{δ} -множоство в βX , то из бикомпактности $\beta X \setminus X$ следует, что $\chi(F, \beta X \setminus X) \leqslant \aleph_{\delta}$ и

 $F = \bigcap \{F_{\alpha} : \alpha < \lambda\} \cap (\beta X \setminus X) \subset F_{\alpha} \cap (\beta X \setminus X) \subset V \cap (\beta X \setminus X) = U.$

Но тогда из выбора U имеем, что F не лежит в сепарабельном бикомпакте, а поэтому $F \setminus B \neq \Lambda$. Поскольку X — псевдокомпактное пространство, F есть G_{δ} -множество в βX . а B — замкнутое в βX множество, то $F \setminus B$ есть G_{δ} -множество в βX . Так как $F \setminus B \neq \Lambda$, то, по характеристическому
свойству псевдокомпактных пространств, имеем $(F \setminus B) \cap X \neq \Lambda$. Возьмем $x_{\lambda} \in (F \setminus B) \cap X$. Далее, поскольку существует $x \in (F \setminus B) \cap (\beta X \setminus X)$, то
существует также бикомпакт F' счетного в βX характера и такой, что $x \in E$ $E \cap F' \subset B \cap F'$. Положим теперь $E \cap F'$. Легко видеть, что
построенные таким образом x_{λ} , $E \cap F'$ удовлетворяют условням $E \cap F'$. Построение завершено.

Заметим, что точки $\{x_{\alpha}: \alpha < \omega_1\}$ образуют свободную последовательность в X длины X_1 . Действительно, если $\lambda < \omega_1$, то $\{\cup \{x_{\alpha}: \alpha \leq \lambda\}\} \cap F_{\lambda} = -\infty$, как это следует из п. 6) нашего построения. Но, поскольку, F_{λ} – бикомпакт и $x_{\alpha} \in F_{\lambda}$ для $\alpha > \lambda$, то мы имеем, что $\{\cup \{x_{\alpha}: \alpha > \lambda\}\} \subset F_{\lambda}$, откуда

 $[\cup \{x_\alpha\colon \alpha\leqslant \lambda\}]\cap [\cup \{x_\alpha\colon \alpha>\lambda\}]=\Lambda$. Предложение доказано.

Лемма 1. Пусть X— нормальное топологическое пространство, $c(X) \le \Re_0$, $F \subseteq X$, F заминуто в X и нигде не плотно, тогда существует такое Φ , что $F \subseteq \Phi$, Φ — заминутое нигде не плотное в X множество и $\psi(\Phi, X) \le \Re_0$.

Доказательство. Существует семейство γ открытых попарно дизьюнктных в X множеств такое, что для каждого $U \subseteq \gamma$ U есть F_{σ} -множество в X и $U \subseteq X \setminus F$, $[\cup \{U : U \subseteq \gamma\}] = X$. Поскольку $c(X) \leqslant \Re_{\sigma}$, то $|\gamma| \leqslant \Re_{\sigma}$. Пусть $G = \cup \{U : U \subseteq \gamma\}$. Тогда G есть открытое в $X \cap F_{\sigma}$ -множество, поэтому $F \subseteq X \setminus G$ — замкнутое $G_{\overline{\sigma}}$ -множество в X и $X \setminus G$ нягде не плотно в X.

Смедствие 4. Пусть X — нормальное пространство без изолированных точек и $c(X) \leq \aleph_0$, тогда $\gamma = \{F: F \subset X, F - замкнутое$ нигде не плотное $G_{\mathfrak b}$ -множество в $X\}$ есть сеть в пространстве X.

Следствие 2. Пусть $X - T_3$ -пространство точечно-счетного типа без изолированных точек, тогда множество $\gamma = \{F: F \subset X, F - \text{бикомпакт}, \chi(F, X) \leq \aleph_0 \ u \ F - \text{пигде не плотно в } X\}$ есть сеть в пространстве X.

Теорема 2. Пусть X-k-пространство, $t(B) \leq \aleph_0^{-1}$ для каждого $B \subset X$, B- нигде не плотно в X и $c(X) \leq \aleph_0$. Тогда $t(X) \leq \aleph_0$.

A = A о к а з а т е л ь с т в о. Пусть A = X, A = A. Положим A = A существует $A_0 = A$, $A_0 = A$, $A_0 = A$, $A_0 = A$, $A_0 = A$. Мы докажем, что A = A о $A_0 = A$. Поскольку A = A-пространство, то существует бикомпакт A = A. Поскольку A = A-пространство, то существует бикомпакт A = A. Возьмем A = A. Заметим, что A = A не есть нигде не плотное множество в A = A. Заметим, что A = A не есть нигде не плотное множество в A = A. Мы получили противоречие с равенством A = A следовало бы, что A = A. Мы получили противоречие с равенством A = A налогично, легко доказать, что A = A по A = A о A = A о A = A о A = A о A = A пигде не плотно в A = A и следовательно, но лемме A = A существует A = A пигде не плотный в A = A бикомпакт, A = A о

Покажем, что $[H] \cap M$ плотно в M. Действительно, если $V \subset M$, V открыто в M, то существует такой бикомнакт G, $G \subset V$, для которого $\chi(G,\Phi) \leq \aleph_0$. Заметим, что множество $H \cap \Phi$ плотно в Φ и, следовательно, если $\beta = \{O_i: i \in N\} - \mathsf{б}$ аза G, то существуют такие x_i , что $x_i \in H \cap O_i$ для $i \in N$. Но тогда $\{U\{x_i: i \in N\}\} \cap G \neq \Lambda$, т. е. $\{H\}_{\aleph_0} \cap G \neq \Lambda$, и, поскольку $\{H\}_{\aleph_0} = H$, получим $H \cap G \neq \Lambda$. Таким образом, $H \cap M$ плотно в M. Но M нигде не плотно в Φ и, следовательно, существует $T \subset H \cap M$, $\{T\} \leq \aleph_0$, $x \in [T]$, т. е. $x \in [H \cap M]_{\aleph_0} \subset [H]_{\aleph_0} = H$. Получили противоречие. Таким образом, $\{A\}_{\aleph_0} = \{A\}$, а тогда $t(X) \leq \aleph_0$. Теорема доказана.

Замечание 1. Теорема остается верной также в случае, когда X — нормальное счетно-компактное пространство с условием Суслина, в котором $t(B) \leq \aleph_0$ для каждого $B \subseteq X$, B нагде не плотно в X.

Замечание 2. В случае, когда X-k-пространство, условие $t(B)\leqslant \Re_0$ для каждого B, нигде не плотного в X, эквивалентно условию $t(B)\leqslant$

 $\leqslant lpha_0$ для каждого нигде не плотного в X бикомпакта B.

Б лемме 1 существенно использовали нормальность топологического престранства, однако верно следующее

П в едложение 1. Пусть X — регулярное счетно-компактное пространство и $c(X) \leqslant \aleph_0$. Тогда семейство $\gamma = \{F: F \subset X, F \text{ замкнуто в } X \}$

и нигде не плотно $\psi(F, X) \leq \aleph_0$ есть π -сеть в пространстве X.

 F_{α} о к а з а т е л ь с т в о. Пусть $x \in U \subset X$, U открыто в X. Поскольку X — регулярное топологическое пространство, то существует такая открытая окрестность U_i точки x, что $x \in U_i \subset [U_i] \subset U$. Легко построить по индукции семейство окрестностей $\{U_i\colon i\in N\}$, удовлетворяющих условию $x \in U_{i-1} \subset [U_{i+1}] \subset U_i$, где $i\in N$. Тогда $x\in \cap\{[U_i]\colon i\in N\}=\cap\{U_i\colon i\in N\}=F_1\subset U$ и поэтому F_1 — замкнутое множество в X и $\psi(F_1,X)\leqslant \aleph_0$. Пусть $\inf F_1 \ne \Lambda$. Построим по трансфинитной индукции множества F_α для всех $\alpha<\omega_i$, удовлетворяющих следующим условиям: 1') $\psi(F_\alpha,X)\leqslant \aleph_0$; 2') $F_\alpha\subset U$ для $\alpha<\omega_i$; 3') $F_\alpha\subset \operatorname{Int} F_\beta$ для каждого $\alpha>\beta$, причем $F_\alpha\ne 1$ int F_2 ни для какого $\alpha>\beta$. Действительно, пусть мы уже построили F_α для всех $\alpha<\lambda$. Положим $F=\cap\{F_\alpha\colon \alpha<\lambda\}$, тогда по п. 3') нашего построенья имеем, что $F=\bigcap\{\operatorname{Int} F_\alpha\colon \alpha<\lambda\}$ и, следовательно, $\psi(F,X)\leqslant \aleph_0$. В силу счетной компактности пространства X, имеем, что $F\ne\Lambda$ п F замкнутое в X. Построенное таким образом семейство замкнутых множеств 1')—3') удовлетворяет условиям 1')—3'). Положим теперь $U_\alpha=\operatorname{Int} F_\alpha\setminus Y_{\alpha+1}\ne\Lambda$ для $\alpha<\omega_1$. Заметим теперь, что семейство $\gamma=\{U_\alpha\colon \alpha<\omega_1\}$ есть семейство попарно дизъюнктных открытых в X множеств и $|\gamma|=\aleph_1$, что противоречит условию. Предложение доказано.

Б. Э. Шаппровский декавал, что если X — топологическое пространство и $cc(X) \leq \aleph_0$, то в X существует $Y \subseteq X$, [Y] = X, Y — наследственно финальномомнаютное подпространство. Следующая теорема является анало-

том результата Б. Э. Шапировского.

Определение 1. Пусть $A \subseteq X$, A разделено справа, если существует такое упорядочение множества A, $A = \{x_{\alpha} : \alpha < \omega_1\}$, что для каждого $\lambda < \omega_{\tau} \ [\ \ \ \{x_{\alpha} : \alpha < \lambda\} \] \cap (\ \ \ \ \{x_{\alpha} : \alpha \geq \lambda\}) = \Lambda$. Определение 2. Пусть A = X, A разделено слева, если су-

Определение 2. Пусть A = X, A разделено слева, если существует такое упорядочение множества A, $A = \{x_{\alpha} : \alpha < \omega_{\tau}\}$, что для каждего $\lambda < \omega_{\tau}$ ($\cup \{x_{\alpha} : \alpha \leq \lambda\}$) $\cap [\cup \{x_{\alpha} : \alpha > \lambda\}] = \Lambda$.

A. Hajnel, J. Juhasz доказали, что если |A|= au и A разделено справа

и слева, то A содержит дискретное подмиожество мощности au.

Теорема 4. Пусть X- пространство точечно-счетного типа, $cc(X) \le X_0$.

Тогда существует такое $Y \subseteq X$, что [Y] = X u Y является пространством точечно-счетного типа, финально компактным.

Доказательство. Пусть β — база в X, $|\beta| = \tau$. Вполне унорядочим β по тему ω_{τ} . Построим по трансфинитной индукции множества B_{α} такие, что: 1) B_{α} — бикомпакт, $\chi(B_{\alpha}, X) \leq \aleph_{\tau}$; 2) $B_{\lambda} \cap [\cup \{B_{\alpha}: \alpha < \lambda\}]$; 3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$; 3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$; 3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$) (3) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (4) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (5) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (4) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (5) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (5) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (5) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (6) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (6) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (7) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (7) $(\cup \{B_{\alpha}: \alpha < \lambda\}]$ (8) $(\cup \{$

 $\alpha \leq \lambda$) $\cap U_{\lambda} \neq \Lambda$ для $\lambda < \omega_{\tau}$.

Деяствительно, пусть мы построили B_{α} для всех $\alpha < \lambda$. Рассмотрим $[\ \cup \{B_{\alpha}: \alpha < \lambda\}\] = F -$ замкнутое в X мпожество. Если $(\ \cup \{B_{\alpha}: \alpha < \lambda\}\)$ \cap $U_{\lambda} \neq \Lambda$, то положим $B_{\lambda} = \Lambda$. Пусть $(\ \cup \{B_{\alpha}: \alpha < \lambda\}\) \cap U_{\lambda} = \Lambda$, но тогда и $F \cap U_{\lambda} = \Lambda$. Поскольку X — пространство точечно-счетного тина, то существует бикомпакт B_{λ} , счетного в X характера, лежащий в U_{λ} . Легко видеть. Что построенное нами множество B_{λ} удовлетворяет всем условиям A(X) = A(X). Положим A(X) = A(X) пусть A(X) = A(X) пострания и A(X) = A(X) вста несчетное покрытие, из которого нельзя выделить счетного поднокрытия. Построим по трансфинитной индукции множества A(X) = A(X)

для всех $\alpha < \omega_1$, удовлетворяющих следующим условиям: 1*) $O_{\alpha} \subset O_{\beta}$ при $\beta < \alpha$, $O_{\alpha} = \cup \{V \colon V \in \eta \subset \gamma, \ |\eta| \leq \aleph_0\}$; 2*) если $x_{\alpha} \in B_{\mu(\alpha)}$, то $B_{\mu(\alpha)} \subset O_{\alpha}$; 3*) $x_{\alpha+1} \in O_{\alpha+1} \setminus O_{\alpha}$.

Действительно, пусть мы построили x_{α} , O_{α} для всех $\alpha < \lambda < \omega_1$. Возьмем $G = \cup \{O_{\alpha}: \alpha < \lambda\}$, тогда по выбору O_{α} имеем, что $Y \setminus G \neq \Lambda$, так как в противном случае существовало бы такое $x_{\alpha} \in B_{\mu(\alpha)}$, но тогда $B_{\mu(\alpha)} \subseteq O_{\alpha}$, откуда получается противоречие с непустотой $(Y \setminus G) \cap B_{\mu(\alpha)}$. Положним $x_{\lambda} = x$. Выберем конечное подпокрытие ξ бикомпакта $B_{\mu(\alpha)}$ и пусть $O_{\lambda} = G \cup (\cup \{V: V \in \xi\})$. Легко видеть, что выполняются требования $1 \setminus -3 \setminus -3 \cup \{V: V \in \xi\}$ нашего построения. В силу 1^*), 3^*) множество $A = \{x_{\alpha}: \alpha < \omega_1\}$ разделено слева, а из и.2) следует, что множество A разделено и справа. Отеюда получаем, что A содержит дискретное подпространство мощности x_1 , что противоречит условию $cc(X) \leq x_0$. Теорема доказана.

В заключение автор выражает глубокую признательность В. И. Пономареву за руководство работой, а также благодарность Б. Э. Шапировско-

му, который помог избавиться в теореме 4 от (СН).

Московский государственный университет им. М. В. Ломоносова

Поступило 22 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Архангельский, Б. И. Пономарев, ДАН, 182, № 5 (1968). ² А. В Архангельский, ДАН, 192, № 2 (1970). ³ W. W. Comfort, Gordon Hugh, Trans. Am. Math. Soc., 111, № 3 (1964). ⁴ А. Најпе I. J. Гићаз z, Proc. Keninkl. Nederl. Acad. Wet., Ser. A, 70, № 3 (1967). ⁵ Б. Э. Шаппровский, ДАН, 202, № 4 (1972). ⁶ М. М. Чобан, Вестн. Московск. унив., № 6, 87 (1967).