УДК 517.9

Б. В. БАЗАЛИП, В. Ю. ШЕЛЕПОВ

ОБ ОДНОЙ СМЕШАННОЙ ЗАДАЧЕ СО СВОБОДНОЙ ГРАНИЦЕЙ ДЛЯ УРАВНЕНИЯ ЛАПЛАСА

(Представлено академиком И. Н. Векуа 1 VI 1972)

1. Рассматривается задача о нахождении области Ω и определенной в ней функции u(x,y) по следующим условиям: а) область Ω расположена в нижней полуплоскости, ее граница не имеет самопересечений и состоит из полупрямых $x=\pm 1,\ y<0$, совокупность которых мы обозначим через Γ , и искомой кривой γ с концами (-1,0),(1,0); б) гармоническая внутри Ω функция u(x,y) непрерывна в Ω , непрерывно дифференцируема в Ω , исключая, быть может, точки (-1,0),(1,0), и удовлетворяет условиям

$$u(x, y) = 1$$
 на γ ; $\partial u / \partial v + \alpha u = 0$ на Γ ; $u \to 0$ при $y \to -\infty$; (1)

$$|\operatorname{grad} u| = \lambda \operatorname{na} \gamma, \quad \lambda = \operatorname{const}; \tag{2}$$

 \mathbf{v} — внешияя пормаль, $\alpha = \text{const} > 0$.

Назовем эту задачу задачей А.

Эта задача моделирует тепловое равновесие в твердой фазе вещества, которое заполняет полосу $-1 \le x \le 1$ и находится в двух состояниях, твердом и жидком. Она возникает при изучении квазистационарной задачи Стефана. По своей ирироде она близка к кавитационным задачам гидродинамики $\binom{1}{2}$. Наличие неизвестной части границы и условие $\binom{2}{2}$ делают ее существенно нелинейной. Вариационная природа тепловых проблем такого типа установлена в $\binom{3}{2}$. В настоящей работе вариационным методом доказывается существование — и при некоторых естественных ограничениях — единственность решения задачи А. Всюду в дальнейшем считается, что $\lambda \ge \alpha$.

2. Приведем основные факты, относящиеся к линейной задаче о нахождении гармонической в заданной области Ω функции, которая непрерывна в $\overline{\Omega}$, непрерывно дифференцируема вплоть до Γ и удовлетворяет условиям (1) (задача B). При этом γ предполагается произвольной жордановой кривой.

 Π с м м а 1. Если гармоническая функция u(x,y) удовлетворяет второму и третьему условиям (1) и непрерывно принимает на γ неотрицательные значения $\varphi(x,y)$, то она неотрицательна в $\overline{\Omega}$ и принимает свое наибольшее значение на γ . Если $\varphi(x,y)\not\equiv 0$, то u(x,y) положительная в $\overline{\Omega}$, за исключением тех точек, где $\varphi(x,y)$ обращается в нуль.

Обозначим через Π полуполосу $-1 \le x \le 1$, $y \le 1$. Рассмотрим при фиксированной области Ω функционал

$$J(\Omega, u) = \int_{\Omega} (u_x^2 + u_y^2) dx dy + \alpha \int_{\Gamma} u^2 dy - \lambda^2 \iint_{\Pi \setminus \Omega} dx dy$$
 (3)

на множестве функций, непрерывных в Ω , непрерывно дифференцируемых в $\Omega+\Gamma$, равных единице на γ и нулю на бесконечности, для которых $J(\Omega,u)<\infty$. Существует единственная функция u(x,y), на которой функционал (3) достигает своего наименьшего значения. Эта функция является решением задачи В. Как доказано в (4), она может быть гармонически продолжена через Γ .

Решение $u^{\circ}(x, y)$ задачи В в полуполосе $-1 \le x \le 1$, $y \le 0$ строится явно методом разделения переменных. Оно экспоненциально убывает на бесконечности. Отсюда с помощью леммы 1 получаем для решения задачи В в произвольной области Ω оценку

$$0 \le u(x, y) \le M \exp \lambda_0 y, \quad \lambda_0 > 0, \quad M = \text{const.}$$
 (4)

 Π е м м а 2. На решении задачи B функционал (3) может быть преобразован κ виду

$$J(\Omega, u) = \alpha \int_{\Gamma} u \, dy - \lambda^2 \int_{\Pi \setminus \Omega} dx \, dy.$$

3. Назовем глубиной свободной границы у точную нижнюю грань ординат всех ее точек, взятую с обратным знаком. Введем обозначения

$$C_0 = \int_{-\infty}^0 u^0(1, y) dy, \quad H = \frac{\alpha C_0}{\lambda - \alpha}.$$

Рассмотрим теперь функционал (3) на множестве пар (Ω, u) таких, что свободная граница γ области Ω проходит через точки (-1,0), (1,0), лежит в нижней полуплоскости и имеет глубину, не превосходящую 2H, а функция u(x,y) определена в Ω и обладает теми же свойствами, что и в п. 2. На этом множестве фупкционал (3) ограничен снизу. Обозначим через d его точпую нижнюю грань и пусть (Ω_n, u_n) — минимизирующая последовательность: $\lim J(\Omega_n, u_n) = d$.

Будем говорить, что область Ω обладает свойством S, если кривая γ может быть задана уравнениями $x=x(t),\ y=y(t),\ -T\leqslant t\leqslant T,$ где x(t)- нечетная, а y(t) — четная функции и обе они не убывают при $0\leqslant t\leqslant T$.

Пемма 3. Если подвергнуть Ω симметризации Штейнера (5) относительно осей координат (она определяется через симметризацию $\Pi \setminus \Omega$) и заменить функцию u(x, y) на $u^*(x, y)$ — решение задачи B в новой области, то $J(\Omega^*, u^*) \leq J(\Omega, u)$. Область Ω^* обладает свойством S, а функция $u^*(x, y)$ четна по x.

По поводу этой леммы см. (1). Благодаря ей минимизирующую последовательность можно считать состоящей из областей, обладающих свойством S, и функций, которые являются в них решениями задачи B. Тогда в системе координат (ξ, η) , повернутой относительно (x, y) на угол $\pi/4$ против часовой стрелки, правая половина дуги γ_n задается явным уравнением $\eta = \eta_n(\xi)$. Все функции $\eta_n(\xi)$ равномерно ограничены и удовлетворяют условию Липшица с постоянной 1. Аналогичными свойствами обладает левая половина γ_n в соответствующей системе координат. Это позволяет считать, что γ_n равномерно сходятся к некоторой кривой γ . В принципе она могла бы содержать отрезок оси y, проходимый дважды. В дальнейшем мы покажем, что это невозможно. Однако γ может частично слиться с Γ вдоль отрезков $x = \pm 1, -b \leqslant y \leqslant 0$. В этом случае можно показать,

что
$$\lim_{n \to \infty} \int_{b}^{0} u_n(1, y) dy = b.$$

Области Ω_n сходятся к некоторой области Ω , обладающей свойством S. Она ограничена частью γ_0 кривой γ , не лежащей на Γ , и вертикалями $x==\pm 1,\ y<-b$. Последовательность гармонических функций $0\leqslant u_n(x,y)\leqslant 1$ компактна, и можно считать, что они сходятся вместе с производными к функции u(x,y), которая гармонична в Ω и на упомянутых вертикалях, где она удовлетворяет второму условию (1). Легко показать, что интеграл Дирихле функций u(x,y) конечен.

Далее функция u(x, y) может быть продолжена по непрерывности единицей в каждую точку кривой γ_0 . Достаточно рассмотреть ее правую половину γ_0^r . Пусть сначала $z_0 = x_0 + iy_0$ — внутренняя точка γ_0^r . Проведем

в плоскости z=x+iy разрез вдоль луча l, проходящего через z_0 под углом $3\pi/4$ к оси абсцисс. Существует последовательность точек $z_n \in \gamma_n$, сходящаяся к z_0 вдоль l. Тогда можно показать, что при достаточно большом K для любого $z \in \overline{\Omega}_n$

 $|u_n(z) - 1| \le K \operatorname{Re} \left[e^{i\pi/4} (z - z_n) \right]^{1/2}$ (5)

Если z — произвольная точка области Ω , то существует такое N, что $z \in \Omega_n$ при $n \ge N$. Поэтому наше утверждение получается из (5) последовательным переходом при $n \to \infty$ и $z \to z_0$. Когда z_0 совпадает с одним из концов $\gamma_0{}^r$, оно доказывается аналогично тому, как это сделано в (6), стр. 561.

. Таким образом, функция $u\left(x,\;y
ight)$ является в области Ω решением за-

дачи В. По лемме 2

$$\iint_{\Omega} (u_x^2 + u_y^2) \, dx \, dy + 2\alpha \int_{-\infty}^{-b} u^2 (1, y) \, dy = 2\alpha \int_{-\infty}^{-b} u (1, y) \, dy.$$

Ввиду равномерной сходимости $u_n(1, y)$ к u(1, y) на $(-\infty, -b + \varepsilon]$ при любом $\varepsilon > 0$ и оценки (4), имеем

$$d=\lim\Bigl(2\alpha\int\limits_{-\infty}^0u_n\,dy-\lambda^2\int\limits_{\Pi \diagdown \Omega_n}dx\,dy\,\Bigr)=2\alpha\Bigl(\int\limits_{-\infty}^{-b}u\,dy+b\Bigr)-\lambda^2\int\limits_{\Pi \diagdown \Omega}dx\,dy.$$

Введем функцию u'(x, y) = (x, y - b). Она является решением задачи В в области Ω' , которая получается из Ω сдвигом вдоль оси ординат вверх на b. При этом

$$J\left(\Omega',u'
ight)=2lpha\int\limits_{-\infty}^{-b}u\,dy-\lambda^{2}\Bigl(\iint\limits_{\Pi\setminus\Omega}dx\,dy-2b)=d+2b\,(\lambda^{2}-lpha).$$

Сделаем теперь следующее предположение: $\lambda^2 \le \alpha$. Тогда $J(\Omega', u') \le d$. Если бы кривая γ , а следовательно, и γ' , содержала отрезок оси ординат, проходимый дважды, то, отбросив его, мы получили бы допустимую область $\widetilde{\Omega}$. Пусть $\widetilde{u}(x,y)$ — решение в ней задачи В. Тогда, в силу лемм 1 и 2, $J(\widetilde{\Omega}, \widetilde{u}) < J(\Omega', u') \le d$, что невозможно. Таким образом, пара (Ω', u') допустима и реализует минимум функционала (3) на множестве

допустимых пар. Будем обозначать ее снова через (Ω, u) .

4. Часть γ_1 кривой γ , не лежащая на горизонталях $y=-2H,\ y=0$, представляет собой аналитическую дугу в окрестности каждой своей точки. Вдоль нее функция u(x,y) удовлетворяет условию $\partial u/\partial v = |\nabla u| = \lambda$. Доказательство этого может быть проведено методом внутренних вариаций Шиффера (²). Так как область Ω обладает свойством S, то остальная часть γ могла бы состоять только из отрезков горизонталей $y=-2H,\ y=0$. Покажем, что на самом деле глубина γ строго меньше 2H. Действительно, функция u(x,y) принимает всюду на γ свое максимальное значение, следовательно, на ней $\partial u/\partial v \ge 0$. Поэтому, если бы глубина γ была 2H, мы имели бы

$$4\lambda H \leqslant \int\limits_{\gamma_1} rac{\partial u}{\partial v} \, ds \leqslant \int\limits_{\gamma} rac{\partial u}{\partial v} \, ds = \alpha \int\limits_{\Gamma} u \, ds \leqslant 2\alpha \, (2H + C_0),$$

что противоречит определению числа H.

Если мы теперь предположим, что $\lambda^2 \geqslant \alpha$, то γ не может также содержать отрезков [-1,-c], [c,1] оси x,c>0. Пусть это не так. Представив функцию $u^{\mathfrak{o}}(x,y)$ из п.2 с помощью синус-преобразования Фурье по переменной y, найдем: $u_y^{\mathfrak{o}}(x,0) \to \infty$ при $x\to \pm 1$. Отсюда нетрудно вывести, что $u_y(x,0)$ обладает тем же свойством.

На паре (Ω, u) вариация функционала (3) есть (cm. (7))

$$\delta J(\Omega, u; \delta \mathbf{x}, \delta u) = \int_{\mathbf{v}} (\lambda^2 - |\nabla u|^2) \, \delta \mathbf{x} \, \mathbf{v} \, ds.$$

Если вектор δx симметричен относительно оси y, отличен от нуля лишь в интервалах (-1, -c'), $(\bar{c}', 1)$, где $|\nabla u| > \lambda$, и направлен по \mathbf{v} , то $\delta J < 0$. Так что если $\delta = \max |\delta x|$ достаточно мало, то для проварьированной области Ω и решения задачи B в ней будем иметь: $J(\tilde{\Omega}, \tilde{u}) < J(\tilde{\Omega}, u)$. Просимметризуем Ω относительно оси y. От этого сумма первого и третьего слагаемого в (3) может лишь уменьшиться, а интеграл функций $\tilde{u}(1, y)^2$ от $-\infty$ до 0 перейдет в интеграл функции $\tilde{u}^*(1,y)^2$ от $-\hat{\infty}$ до δ , увеличившись при этом не более чем на δ . Введем функцию $u'(x, y) = \tilde{u}^*(x, y + \delta)$. Тогда пара (Ω', u') , где $\widetilde{\Omega}'$ получается из $\widetilde{\Omega}$ сдвигом вниз на величину δ , является допустимой. При этом

$$J(\Omega', u') < J(\Omega, u) + 2\delta(\alpha - \lambda^2) \leq J(\Omega, u) = d,$$

что невозможно. Итак, доказана T е о p е м а. E сли $\lambda^2 = \alpha < 1$, то существует решение задачи A. Πpu

этом свободная граница у является аналитической кривой.

5. Физически оправдано искать такое решение задачи A, что u(x,y)есть строго возрастающая функция от y при любом $x \in [-1, 1]$. С помощью симметризации легко убедиться, что решение, существование которого мы доказали, принадлежит этому классу. В этом классе задача имеет единственное решение. Оно дает абсолютный минимум функционалу (3). Это доказывается методом перехода к функционалу с постоянной областью интегрирования, принадлежащим Фридрихсу (8). Последнее утверждение позволяет установить, что при $\lambda > \alpha$ и $\lambda^2 > \alpha$ задача A не имеет решений в указанном классе.

Авторы пользуются случаем поблагодарить И. И. Панилюка, беседы с которым сыграли большую роль при изучении данной задачи, и В. С. Те-

на за ценные обсуждения.

Институт прикладной математики и механики Академии наук УССР Донецк

Поступило 15 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ P. Garabedian, H. Lewy, M. Schiffer, Ann. Math., 56, 560 (1952). 7. Сагаве стап, п. Lewy, м. Schiffer, Анн. маш., 30, 300 (1902).
2 Г. Биркгоф, Э. Сарантонелло, Струи, следы и каверны, М., 1964. ³ И.И. Данилюк, В. Е. Кашкаха, Доп. АН УРСР, сер. А (1972). ⁴ Б. М. Левитан, ДАН, 146, № 1 (1962). ⁵ Г. Полиа, Г. Сегё, Изопериметрические неравенства в математической физике, М., 1962. ⁶ Р. Курант, Д. Гильберт, Методы математической физики, 2, М.— Л., 1945. ⁷ И. М. Гельфанд, С. В. Фомин, Вариационное исчисление, М., 1961. ⁸ К. Friedrichs, Math. Ann., 109, № 1, 60 (1933).