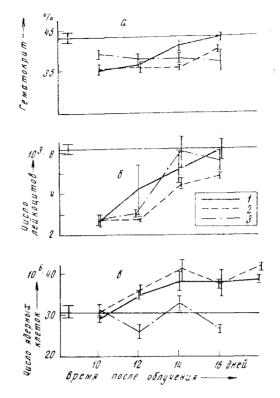
УДК 577.391

ГИСТОЛОГИЯ

н. ф. баракина, ю. хао

ВЛИЯНИЕ УДАЛЕНИЯ НЕКОТОРЫХ УЧАСТКОВ КРОВЕТВОРНОЙ СИСТЕМЫ НА ЛИМФОИДНУЮ ПОПУЛЯЦИЮ КОСТНОГО МОЗГА У СУБЛЕТАЛЬНО ОБЛУЧЕННЫХ МЫШЕЙ

(Представлено академиком Б. Л. Астауровым 21 VIII 1972)


К двенадцатому дию после сублетального облучения в регенерирующем костном мозге мышей наблюдается проходящая аккумуляция лимфоидных клеток (1-7). Электронномикроскопическое изучение показало, что эта клеточная популяция является гетерогенной и содержит, кроме лимфоцитов, значительное количество лимфоцитоподобных клеточных элементов, названных X-клетками (⁸). Этот клеточный тип не встречается в костном мозге нормальных взрослых мышей, но присутствует у только что родившихся животных. Недавние работы показали, что Х-клетки, повидимому, содержат эмбриональные антигены. Защита аминэтилизотиуронием (АЭТ) не предотвращает аккумуляции Х-клеток при пострадиационном восстановлении медулярного кроветворения (9). Аккумуляция Х-клеток не выявляется при введении мышам нормальных спигенных костномозговых клеток в период между 1 и 7 днями после воздействия радиации (10, 11). Настоящее исследование предполагает изучение кинетики лимфоцитоподобной клеточной популяции в условиях удаления некоторых участков кроветворной системы. Кроме того, представлялось интересным проследить изменения других клеточных полуляций костного мозга.

Мышей линии C57Bl в возрасте 8 недель облучали тотально в дозе 400 р (180 кв. 18 ма, 0.5 мм Cu + 0.75 мм Al, фокусное расстояние 35 см. мощность дозы 210 р/мин). Животные были разделены на 3 группы. В первой группе мышам за 10 дней до облучения удаляли селезенку. Во второй группе животным в возрасте 4 недель производили тимэктомию, через 20 дней после этого удаляли селезенку и через 10 дней облучали. Третья группа не получала никакой дополнительной обработки. Контролем служили необлученные и неоперированные мыши. Животных всех 3 групп забивали через 10, 12, 14, 16, 18 дней после облучения по 6-45мышей на срок. Костный мозг извлекали из 2 бедренных костей. Для подсчета клеток крови и костного мозга использовали электронный счетчик (модель В), снабженный специальным анализатором частиц по объему. Делали мазки костного мозга, которые красили по методу Май — Грюнвальд — Гимза. Клетки группировали в 5 основных популяций, т. е. 1) молодые и промежуточные миелоидные клетки: 2) зрелые миелоидные клетки; 3) эритроидные клетки; 4) лимфоидные клетки; 5) ретикулярные

Во всех группах животных изменения периферической крови близки за исключением гематокрита, который несколько ниже нормы у спленэктомированных животных и у животных с удаленными тимусом и селезенкой (рис. 1a, δ).

Ко дню после облучения общее количество ядерных клеток костного мозга во всех сериях эксперимента восстанавливается до нормы (рис. 1в). В последующий период времени у мышей с удаленными тимусом и селезенкой число клеток остается в пределах нормы, а у интактных и спленэктомированных животных превышает исходный уровень.

Рис. 1. Изменение гематокрита (a), количества лейкопитов периферической крови (103 ил) (б) и яперных клеток костного мозга (в) в различные сроки после облучения в дозе 400 р. 1 — только облучение, 2- сплепэктомия + облучение, 3 — тимэктомия + + спленэктомия + облучение

Число молодых и промежуточных миелоидных клеток (рис. 2a) у интактных и спленэктомированных мышей непрерывно увеличивается и после 14 суток превышает их количество у нормальных животных. Уровень этой клеточной популяции у мышей с удаленными тимусом и селезенкой во все изученные сроки составляет примерно 50% от исходной величины. Сходная картина наблюдается в подразделении созревания (рис. 26), включающем полиморфноядерные лейкоциты и метамиелоциты. В период между 10 и 18 сутками после облучения количество клеток эритроидной серии у животных с удаленной селезенкой несколько выше, чем в двух других группах эксперимента (рис. 2в). Число клеток лимфоцитоподобной популяции у интактных животных через 12 дней после облучения является максимальным и более чем в 2 раза превышает начальный уровень (рис. 2г). У спленэктомпрованных животных кривая изменения количества Х-клеток показывает, что наивысшая аккумуляция этих клеток отмечается также через 12 дней после облучения. Однако количество клеток в этом случае больше, чем у интактных животных, и через 14 дней превышает норму. Тимэктомия и силенэктомия, произведенная до облучения животных, не устраняет аккумуляцию лимфодитоподобных клеток в костном мозге, хотя максимум аккумуляции смещается на 14 сутки, а на 16 день число Х-клеток выше нормы.

Таким образом, удаление участков кроветворной системы не изменяет феномена аккумуляции X-клеток при восстановлении пострадиационного медулярного кроветворения. Более того, спленэктомия, а также темэктомия совместно со спленэктомией способствуют увеличению количества X-клеток и удлиняют время их аккумуляции в костном мозге. Наши материалы позволяют сделать следующие заключения:

1) Х-клетки образуются непосредственно в костном мозге сублетально облученных мышей в период его регенерации.

2) Увеличение числа Х-клеток и их более длительная задержка в костном мозге тимэктомированных и спленэктомированных мышей, возможно,

связана с тормозящими влияниями со стороны тимуса и селезенки или же является следствием невозможности миграции X-клеток из костного мозга при отсутствии этих органов. О наличии такой миграции свидетельствуют данные об обмене клеточными элементами между костным мозгом и тимусом (12, 13), а также появление X-клеток в тимусе через 14 дией носле облучения (14).

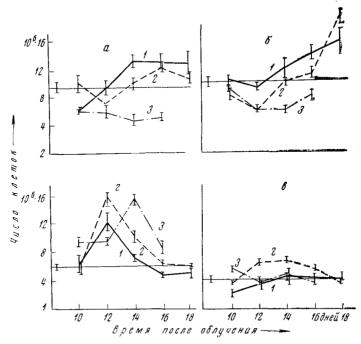


Рис. 2. Изменение количества клеточных популяций костного мозга (2 бедрепных кости) в различные сроки после облучения в дозе 400 р. a — молодые и промежуточные миелоидные клетки, b — эрипроидные клетки, b — лимфоидные клетки. b — только облучение, b — спленэктомия b — облучение, b — тимэктомия b — спленэктомия b

3) Меньшее количество ядерных клеток, а также миелоидной и эритроидной популяций костного мозга в период восстановления гемопоэза у животных с удаленными тимусом и селезенкой свидетельствует об ограниченной компенсаторной возможности обновляющихся систем, механизм которой следует выяснять на уровие стволовых клеток.

Институт биологии развития Академии наук СССР Москва Поступило 10 VII 1972

Льежский университет Бельгия

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. Haot, L. Revesz, H. Haughton, Bull. Cancer, 54, 159 (1967).
² J. Haot, N. F. Barakina, Acta haemat., 42, 347 (1969). ³ M. Delrez, J. Haot, E. H. Betz, Int. J. Radiat. Biol., 15, 405 (1969). ⁴ J. Haot, N. F. Barakina, C. R. Soc. Biol., 164, 1859 (1970). ⁵ H. Ф. Баракина, Ю. Хао, ДАН, 192, 213 (1970). ⁶ Ю. Хао, Н. Ф. Баракина, Радиобиология, 10, 874 (1970). ¬ J. Haot, G. Haughton, L. Revesz, Exp. Cell Res., 66, 171 (1971). № L. Simar, J. Haot, E. H. Betz, Europ. J. Cancer, 4, 529 (1968). № H. Ф. Баракина, И. В. Некрасова и др., Радиобиология, 13, № 4 (1973). № M. Delrez, N. F. Barakina, J. Haot. C. R. Soc. Biol., 164, 2152 (1970). ¹¹ J. Haot, M. Delrez, N. F. Barakina, Abstracts. Tenth Intern. Cancer Congress, Houston, 1970, p. 673. ¹² J. M. Yoffly, In: The Lymphocyte in Immunology and Haemopoiesis, 1967, p. 1. ¹³ J. C. Schooley, M. M. Shrewsbury, ibid., p. 4. ¹⁴ E. H. Betz, J. Bonniver et al., Abstracts. Tenth Intern. Cancer Congress, Houston, 1970, p. 674.