УЛК 642.845:577.3

ФИЗИОЛОГИЯ

Б. А. ГЕР, Е. М. ДЫНЬКИН, А. Н. КАЧМАН

ДВУХКАМЕРНАЯ ДИФФУЗИОННАЯ МОДЕЛЬ СИНАПСА

(Представлено академиком Е. М. Крепсом 10 VIII 1972)

Считается, что процесс снижения концентрации медиатора в синалтической полости определяют два фактора: 1) энзиматический гидролиз (э.г.); 2) диффузия за пределы синанса (1, 2). Однако для нервно-мышечных синансов быстрых фазных волокон млекопитающих существует еще один фактор уменьшения исходной концентрации (C_1) ацетилхолина (AX) в первичной синантической щели (объема V_1); 3) диффузионное перераспределение медиатора (д.п.) между V_1 и вторичной синантической полостью (объема V_2). Поскольку д.п. само по себе не связано с химической инактивацией АХ, максимальная степень снижения C_1 при этом может достигать уровня $C_2 = C_4 / (V_1 + V_2)$.

В настоящей работе строится математическая модель спианса, которая позволяет, в частности, сравнить времена релаксации процессов

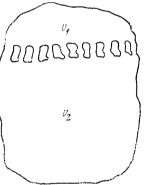


Рис. 1. Двухкамерная диффузионная модель синапса. V_1 — объем первичной синаптической щели; V_2 — суммарный объем вторичных синаптических складок

типа э.г. и д.п. (τ_1 и τ_2 соответственно) и оценить их вклады в быстродействие синапса в целом.

Общая характеристика диффузионной модели синанса (pnc. 1).

1. Синаптическая полость разделена на две камеры V_1 и V_2 , причем $V_2 \gg V_1$ ($^{3-5}$).

- 2. V_4 сообщается с V_2 устьями вторичных синаптических складок, которые расположены сравнительно регулярно на уровне постсинантической мембраны (п.с.м.), обращенной в V_4 . Доля площади (ρ_4), приходящаяся на устья вторичных складок, составляет 10-20% от всей площади продольного сечения V_4 (рассчитано по электронным микрофотограммам ($^{8-8}$)). Анализ трехмерных реконструкций первно-мышечных синапсов позволяет заключить, что площадь контакта V_4 с экстрацеллюлярным пространством ничтожна по сравнению с ρ_4 (см., например, (6)). Поэтому фактор 2 исключен из рассмотрения.
- 3. Допускается, что молекулы AX могут свободно диффундировать (с определенным коэффициентом дуффузии D) во всей внутрисинантической полости $\binom{1}{2}$,
- 4. Нервный импульс приводит к выбросу из пресинантического оксачания в V_1 большого количества молекул АХ (12). Вслед за этим молекулы медиатора диффундируют в V_2 и поглощаются на п.с.м. основней массой холинэстеразных (ХЭ) центров (13). Считается, что активные центры ХЭ расположены на п.с.м. достаточно равномерно с эффективной поверхностной плотностью ρ_2 . Из (13) можно принять, что по порядку величины $\rho_2 \approx 0.05\%$, т. е. $\rho_2 \ll \rho_1$.

Кинетика диффузии.

Решение задачи о соотношении т, и т, в условиях описанной модели сводится к оценке скоростей «поглощения» молекул АХ устьями вторичных синаптических складок и активными центрами ХЭ.

Лиффузия описывается обычным уравнением

$$rac{\partial u}{\partial t} = D^2 \Delta u, \quad \text{rgs} \quad \Delta u = rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2} \; .$$

Формулируя обычным образом условия, «поглощение» можно описать так: имеется множество E — зона поглощения на и.с.м. в V_4 , причем доля илоп(ади E в любом единичном квадрате есть ρ . Тогда в точках E(поглощение); в прочих точках границы $\partial u / \partial n = 0$ (изоляция).

С помощью формулы Грина можно показать, что в пространстве L^z оператор — Δ с такими краевыми условиями будет положительно определенным оператором с вполне непрерывным обратным. Следовательно. к данной краевой задаче применим метод Фурье, и потому ее решенье можно представить в виде

$$u(x, y, z, t) = \sum_{n} e^{-i\hat{x}(u)} C'_{n} u_{n}(x, y, z),$$

где $\lambda^{(n)}$ и u_n — собственные числа и функции оператора $(-\Delta)$, а C_n' определяются начальными данными и для этой задачи значения не имеют.

Предположим, что р – весьма малая плотность. Тогда задача будет малым возмущением краевой задачи Неймана ($\partial u/\partial n = 0$ всюду), у которой $\lambda^0 = 0$, а $\lambda^{(n)}$ при n > 0 — целые числа. Из этого следует, что в рассматриваемой задаче λ^0 должно быть мало, а прочие $\lambda^{(n)}$ — велики по сравнению с λ^0 . Отсюда

$$u = e^{-\lambda^{\eta} D^2} u'(x, y, z) + e^{-\lambda^{(i)} t D^2} u''(x, y, z, t).$$

Здесь второй член стремится при $t \to \infty$ к нулю значительно быстрее, чем нервый. Поэтому рассматриваемый процесс происходит как бы в два этала. На первом этапе достигается быстрое пространственное перераспределение медиатора, после чего создается равновесная концентрация, которая в свою очередь, медленно убывает по закону $e^{-i\pi tD^2}$. Поэтому для ответа на вопрос о снижении концентрации медиатора в целом необходимо выяснить зависимость числа λ^0 от ρ .

Если описать λ⁰ с помощью вариационного принципа (14) и применить иля оценок рассуждения, аналогичные доказательству перавенства

Фриприхса, можно получить оценку $\lambda^0 \times \rho$.

Таким образом, оказывается, что $\tau_1/\tau_2 \approx \rho_2/\rho_i$. Это значит, что в усдовиях рассметренной модели синапса быстрого фазного волокиа млекокопитающего сипжение концентрации АХ в V_1 происходит в два такта: 1) стаккатный сброс C_1 за счет д.п. до C_2 и 2) гораздо болсе медленное (приблизительно на два порядка) спижение C_2 в результате э.г.

Кинетика массообмена медиатора между V_4 в V_2 . Быстродействие (пропускная способность) рассматриваемой модельной системы синанса будет определяться двумя обстоятельствами: а) скоростью диффузии AX из V_1 в V_2 и б) отсутствием переполнения полости синанса медиатором. Поэтому, если на периодически следующие друг за другом через т мсек. впрыскивания АХ система отвечает полноценными и неизмененными во времени импульсами, это значит, что выполняются следующие два условия:

(1) За au мсек. C_1 в V_1 снижается за счет «провала» медиатора в V_2 ниже некоторого порога.

2) Кондентрация AX в V_2 все время остается ниже, по крайней мере,

того же самого порога (это и значит, что полость синапса не переполня-

ется).

Дадим точное описание процесса (см. рис. 1). В V_1 каждые τ мсек. вводится порция АХ, который свободно диффундирует во всем объеме V_1 и через горловины V_2 проникает в V_2 . Поэтому его концентрация в V_4 падает. В V_2 АХ также свободно диффундирует и поглощается на ее п.с.м. холинэстеразой. Соотношение плотностей соединительных «горловин» и холинэстеразных поглощающих центров таково, что $\rho_2 \ll \rho_1$.

Концентрацию АХ в V_1 обозначим $u_1(x, y, z, t)$, а в $V_2 = u_2(x, y, z, t)$. Если первоначальная концентрация медиатора, которая создается при впрыскивании, составляет u_0 , то условия 1) и 2) будут звучать так:

1) $u_1|_{t=\tau} \leq u_0/z$, где z — порог релаксации;

2) $u_2 \leqslant u_0 / z$ всегда.

Если условие 2) выполнено, то процессы диффузии, происходящие в V_1 и V_2 , не влияют друг на друга и могут рассматриваться независимо.

Замечание. Понятие времени релаксации является весьма относительным. В частности, постоянный множитель при времени означает просто изменение порога релаксации и не имеет значения в рассматриваемой задаче.

Пусть λ_1 и λ_2 — значения λ^0 для V_1 и V_2 соответственно, $\lambda_1/\lambda_2 \sim \rho_1/\rho_2 \gg 1$. В V_1 концентрация АХ убывает по закону $e^{-\lambda_1 t}$, и поэтому условие 1) заставляет нас потребовать, чтобы $e^{-\lambda_1 \tau} \leqslant 1/z$.

$$\tau \geqslant \ln z / \lambda_i \sim \ln z / \rho_i. \tag{1}$$

Рассмотрим процессы, происходящие в V_2 . За время dt туда поступает $\lambda_1 u_1 V_1 dt = \lambda_1 e^{-\lambda_1 t} u^{(0)} V_1 dt$ АХ, а количество медиатора, уже находящегося в V_2 , убывает по закону $e^{-\lambda_2 t}$. Поэтому

$$du_2 = -\lambda_2 u_2 dt + \lambda_1 e^{-\lambda_1 t} u^{(0)} \frac{V_1}{V_2} dt.$$

Есян в начале (t=0) концентрация АХ в V_2 была $u_2^{(0)}$, то будем иметь из этого уравнения

$$u_2(t) = u_2^{(0)} e^{-\lambda_2 t} + \frac{\lambda_1 u^{(0)}}{\lambda_1 - \lambda_2} \cdot \frac{V_1}{V_2} \left[e^{-\lambda_2 t} - e^{-\lambda_1 t} \right]$$

и, в частности, при $t=\tau$

$$u_2$$
 (т) $=u_2^{(0)}e^{-\lambda_2\tau}+\Delta$, где $\Delta \sim \frac{V_1}{V_2}(e^{-\lambda_2\tau}-e^{-\lambda_1\tau})$.

Следовательно, при n-м впрыскивании

$$u_2(n\tau+\tau)=e^{-\lambda_2\tau}u_2(n\tau)+\Delta,$$

и так как $u_2(0) = 0$, то легко видеть, что

$$u_2(n\tau) = \frac{\Delta}{1 - e^{-\lambda_2 \tau}} (1 - e^{-n\lambda_2 \tau}) \xrightarrow[n]{} \frac{\Delta}{1 - e^{-\lambda_2 \tau}}.$$

Отсюда условие 2) можно записать так:

$$\Delta / (1 - e^{-\lambda_2 \tau}) \le 1/z$$
, r. e. $V_1 / V_2 \le (e^{\lambda_2 \tau} - 1)/z$.
 $\rho_2 \tau \ge \ln [1 + z V_1 / V_2]$. (2)

Эти условия, 1) и 2), являются окончательными результатами анализа. Таким образом, при достаточном объеме V_2 система получает значительный выигрыш в быстродействии по сравнению с однокамерной системой (когда должно иметь место $\rho_2 \tau \geqslant \ln z$). Кроме того, при достаточном объеме V_2 быстродействие системы целиком определяется временем релаксации в V_1 (1/ ρ_1) и переполнение никогда не наступает. Так,

например, при $V_1/V_2 \approx \frac{1}{20}$, $z \approx 2$ система может пропускать в 10 раз более высокочастотные стимулы, чем при простом поглощении.

Институт эволюционной физиологии и биохимии им. И. М. Сеченова Академии наук СССР Ленинград Поступило 2 VIII 1972

Всесоюзный научно-исследовательский институт синтетического каучука им. С. В. Лебедева Ленинград

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Дж. Экклс, Физиология нервных клеток, ИЛ, 1959. ² Б. Катп, Нерв, мышща, синаис, М., 1968. ³ R. Couteaux, Rev. Canad. Biol., 6, 563 (1947). ⁴ E. de Harven, C. Coërs, J. Biophys. and Biochem. Cytol., 7, 7 (1959). ⁵ E. K. Жуков, Очерки по нервно-мышечной физиологии, «Наука», 1969. ⁶ G. M. Lehrer, L. A. Ornstein, J. Biophys. and Biochem. Cytol., 6, 399 (1959). ⁷ R. J. Barrnett, J. Cell. Biol., 12, 247 (1962). ⁸ R. Davis, G. B. Koelle, J. Cell. Biol., 34, 157 (1967). ⁹ P. Fatt, Physiol. Rev., 34, 674 (1954). ¹⁰ A. G. Ogston, J. Physiol., 128, 222 (1955). ¹¹ K. Krnjevič, J. F. Mitchell, J. Physiol., 153, 562 (1960). ¹² B. Katz, The Release of Neural Transmitter Substances, 1969. ¹³ A. W. Rogers, Z. Darzynkiewicz et al., Nature, 210, 1003 (1966). ¹⁴ C. Г. Михлин, Курс математической физики, «Наука». 1968.