УДК 51:801

MATEMATUKA

А. В. АНИСИМОВ

НЕКОТОРЫЕ АЛГОРИТМИЧЕСКИЕ ВОПРОСЫ ДЛЯ ЯЗЫКА ДИКА

(Представлено академиком В. М. Глушковым 15 XI 1972)

В работе исследуются некоторые алгоритмические проблемы, связан-

ные с языком Дика.

Пусть $X = \{x_1, x_2, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}\}$ — двойной алфавит, τ естественный эпиморфизм свободной полугруппы F(X) в алфавите X на свободную группу \mathfrak{F} , порожденную свободными образующими x_1, x_2, \ldots, x_n . Ядро этого гомоморфизма называют языком Дика и обозначают через D_{2n} .

Язык D_{2n} часто встречается в теоретических исследованиях по контек-

стно-свободным языкам.

Пелью настоящей работы является доказательство следующей тесремы.

Теорема 1. Для произвольной контекстно-свободной грамматики Г. задающей язык L,

1) не существует алгоритма, проверяющего пустоту пересечения $D_{2n} \cap L, n \geq 2;$

2) не существует алгоритма, проверяющего включение $D_{2n} \equiv L$, $n \ge 3$;

3) существует алгоритм, проверяющий включение $L \subseteq D_{2n}$;

4) существует алгоритм, решающий проблемы 1) и 2) при n = 1; 5) проблемы 1) и 2) могут иметь любую степень неразрешимости.

Доказательство пп. 1) и 2) основывается на сведении проблемы тождества для конечно-определенных групп к алгоритмическим вопросам для контекстно-свободных языков (1). Идея такого сведения заключается в том, что конечно-порожденную нормальную подгруппу свободной группы можно промоделировать при помощи подходящего контекстносвободного языка.

Пусть L_1 – язык в алфавите Σ_1 , L_2 – язык в алфавите Σ_2 и $p \in L_1$. Обозначим через $p(L_1)$ язык, получающийся из p и L_2 следующим обра-

30M:

 $q \in p(L_2)$ тогда и только тогда, когда существуют слова u_1, u_2, \ldots \dots , u_{m+1} из свободной полугруппы $F(\Sigma_1)$ и слова r_1, r_2, \dots, r_m из $F(\Sigma_2)$ такие, что $p = u_1 u_2 \dots u_{m+1}$, а $q = u_1 r_1 u_2 r_2 \dots u_m r_m u_{m+1}$.

Язык $\tilde{L}_1(L_2) = igcup_{p \in L_1} p\left(L_2
ight)$ называем ϵ -подстановкой языка L_2

в язык L1.

Пусть $G = \langle X | w_1, \ldots w_h \rangle$ — конечно-определениая группа в алфавите X, заданная системой определяющих соотношений $w_1 = 1, w_2 = \hat{1}, \ldots$

 $\ldots, w_h = 1, R = (\bigcup w_i) \cup (\bigcup w_i^{-1}), C_f$ - класс слов в F(X), эквивалент-

ных слову f из \mathfrak{F} , т. е. $C_f = \tau^{-1}(f)$, $\# \not\in X$.

 \mathbf{B} (1) доказано: слово f равно единице в группе G тогда и только тогда, когда $C_f(\#^*) \cap D_{2n}(\# R^* \# \cup \{\epsilon\}) \neq \emptyset$. Символ # был необходим только для того, чтобы сохранить детерминированность соответствующих языков. Если не требовать детерминированности, то можно ограничиться результатом: слово f равно единице в группе G тогда и только тогда, когда $C_f \cap D_{2n}(R^*) \neq \emptyset$.

Используя операцию деления на слово $f \mid L = \{x \in F(X) \mid fx \in L\},$ из этого факта можно без труда получить $C_f \cap D_{2n}(R^*) \neq \phi$ тогда и только тогда, когда $D_{2n} \cap f \mid D_{2n}(R^*) \neq \emptyset$. Если в качестве группы G можно взять группу с двумя образующими и с неразрешимой проблемой тождества

(2), то получаем первое утверждение теоремы.

Докажем 2). Пусть α и α^{-1} — повые символы, не принадлежащие X, $\mathfrak{F}_1=\mathfrak{F}*\{\alpha\}$ — свободная группа с образующими $x_1, x_2, \ldots, x_n, \alpha, C_f^1$ — класс слов в $X\cup\{\alpha,\alpha^{-1}\}$, эквивалентных слову f из \mathfrak{F} . Тогда $C_f\cap D_{2n}(R^*)\neq \phi$ тогда и только тогда, когда $C_f^1\cap D_{2n}(\alpha\alpha^{-1}R^*\alpha\alpha^{-1}\cup\{\epsilon\})\neq \emptyset$. Отсюда, используя детерминированность языка $D_{2n}(\alpha\alpha^{-1}R^*\alpha\alpha^{-1}\cup\{\epsilon\})$ и операцию деления на слово, можно получить п. 2).

В (³) отмечено, что, применяя конструкцию Г. Хигмана, Б. и Х. Нейманов (⁴), любую конечно-определенную группу можно вложить в конечно-определенную группу с двумя образующими и с той же степенью неразрешимости проблемы тождества, что и для исходной группы. Отсюда, учитывая вышеуказанное сведение, получаем п. 5).

Существование алгоритма, решающего проблемы 1) и 2) при n=1,

следует из результатов С. Гинзбурга о полулинейных миожествах (5).

Третье утверждение теоремы следует из более общего результата. Пусть G — группа в алфавите X, φ — эпиморфизм F(X) на G. Язык $\mathfrak{M} = \operatorname{Ker} \varphi$ назовем групповым языком. Групповые регулярные и контекстно-свободные языки подробно изучались в $(^6)$.

 Π емма 1. Π усть L- произвольный контекстно-свободный язык, a $\mathfrak{M}-$ групповой контекстно-свободный язык, L и \mathfrak{M} заданы своими кон-

текстно-свободными грамматиками.

Tогда существует алгоритм, проверяющий включение $L \subseteq \mathfrak{M}$.

Идея доказательства заключается в следующем. Групповой язык обладает определенными семантическими свойствами, выражающими его групповую природу. По произвольной контекстно-свободной грамматике, задающей этот язык, можно выделить конечное число признаков, характерных для этого языка. Язык L включается в $\mathfrak M$ тогда и только тогда, когда L обладает этими свойствами. Подробное доказательство аналогично доказательству теоремы 3 из работы $(^4)$.

Так как язык Дика D_{2n} является групповым, то, используя лемму, по-

лучаем доказательство п. 3) теоремы 1.

Произвольную контекстно-свободную грамматику нетрудно привести к нормальной форме $\Gamma = (N, X, s, P)$, в которой каждая продукция имеет вид $s \to \varepsilon$, или $A \to BC$, или $A \to a$; A, B, $C \in N$, $a \in X$ (7).

По грамматике Г построим грамматику непосредственных составляг.

щих $\Gamma' = (N, \{\beta\}, s, P')$ в однобуквенном алфавите $\{\beta\}$,

$$P'= egin{cases} s o\epsilon,\ \mathrm{ec}$$
ли $\{s o\epsilon\}\ \in P,\ A o BC,\ \mathrm{ec}$ ли $\{A o BC\}\ \in P,\ MM o etaeta,\ \mathrm{ec}$ ли $\{K o a,\ M o a^{-1}\}\ \in P,\ MK o etaeta \end{cases}$

Можно проверить, что язык $L(\Gamma')$ не пуст (с точностью до пустого слова) тогда и только тогда, когда $D_{2n} \cap L \neq \phi$. Отсюда получим

Следствие. Проблема определения пустоты нс-языка (языка непосредственных составляющих) в однобуквенном алфавите может иметь любую степень неразрешимости.

Другим путем этот результат можно получить, используя метод

А. В. Гладкого (⁸).

В заключение отметим, что многие алгоритмические проблемы для свободных групп сводятся к рассмотрению алгоритмической природы языка Дика. Так, например, проблема существования решений уравнения $f(x_1, x_2, \ldots, x_m) = 1$ в свободной группе \mathfrak{F} очевидным образом эквивалентна вопросу о непустоте пересечения $L_f \cap D_{2n}$, где L_f — нс-язык, получаемый из слова f подстановками вместо x_i всех слов из F(X).

Результаты работы докладывались на семинаре по теории языков и процессоров в Киевском государственном университете; руководители его — акад. В. М. Глушков и проф. В. Н. Редько, которым автор выражает

свою благодарность.

Киевский государственный университет им. Т. Г. Шевченко Поступило 9 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Анисимов, Кибернетика, 2 (1972). ² W. Воопе, Ann. Math., 84, № 1 (1966). ³ М. К. Валиев, Алгебра и логика. Семинар, 8, № 1 (1969). ⁴ G. Нідтап, В. Н. Nеитапп, Н. Nеитапп, J. London Math. Soc., 24 (1949). ⁵ С. Гинзбург, Математическая теория контекстно-свободных языков, М., 1970. ⁶ А. В. Анисимов, Кибернетика, № 4 (1971). ⁷ Sh. Greibach, J. АСМ, 12 (1965). ⁸ А. В. Гладкий, Лекции по математической лингвистике, Новосибирск, 1966.