УДК 552.578.3 + 553.982.061.33(474)

ГЕОХИМИЯ

И. С. ГОЛЬДБЕРГ

ТВЕРДЫЕ БИТУМЫ В НЕФТЯНЫХ ЗАЛЕЖАХ ПРИБАЛТИКИ КАК ПОКАЗАТЕЛЬ СТАДИЙНОСТИ МИГРАЦИИ НЕФТИ

(Представлено академиком А. А. Трофимуком 6 VII 1971)

Для выяснения условий и времени формирования месторождений принципиальное значение имеет определение в нефтеносных и экранирующих пластах всей гаммы углеродистых соединений, фиксирующих сложную историю развития залежей. В этой связи представляет интерес обнаружение широкого спектра твердых битумов на ряде нефтеносных площадей Прибалтики, где битумы локализованы как в подошве нефтенасыщенной части песчаников среднего кембрия (Красноборская, Куликовская площади), так и, значительно шире, в глинисто-карбонатной ордовикской покрышке (Ушаковская, Красноборская, Гусевская, Кулдигская, Нестеровская площади), прослеживаясь в зопах нарушений вплоть до низов силура (Красноборская).

Морфология и условия залегания твердых битумов весьма разнообразны. В кембрийских песчаниках на Красноборском месторождении слой твердого битума залегает в подошве остаточно нефтенасыщенной части пласта, где битум базально цементирует зерна кварца (поровый цемент) и составляет, по замерам в шлифах, 8—12% породы. Размеры пор, выполненные битумом, колеблются от 0,02 до 0,4 мм. На Куликовской площади слой с твердым битумом, также подстилающий нефтенасыщенные песчаники, образован чередованием прослойков среднезернистых песчаников с поровым цементом, представленным твердым битумом, и песчаников с регенерационным кварцевым цементом. При этом битум не попадает в регенерационные каемки кварца, т. е. регенерация проходила до насыщения пласта нефтью, превращенной позднее в твердый битум.

В породах покрышки, экранирующей кембрийские залежи (Красноборское, Ушаковское месторождения), скопления твердых битумов прослеживаются начиная с базального конгломерата и глауконитового песчаника тремадока, при основной концентрации проявлений в нижней 20—25-метровой части разреза ордовика (до таллинского горизонта включительно). Наряду с выполнением густой сети тонких (от долей миллиметра до 2—3 мм) трещин, вертикальных или близких к вертикальным, битум локализуется в отдельных прослоях перекристаллизованных карбонатных пород мощностью от 0,05 до 0,15 м. Совместно с твердым битумом иногда наблюдаются трещины, заполненные жидкой нефтью, или слабо нефтенасыщенные прослои известняков.

Почти повсеместно вокруг выделений битума среди красноцветных пород волховского и кундского горизонтов нижнего ордовика развиты зеленовато-серые ореолы. Полосы осветления отчетливо трассируют положение битумных трещин, превосходя ширину последних в 5—10 раз.

В трещинах битум часто находится в ассоциации с карбонатом. При микроскопическом изучении в шлифах отмечается несколько генераций трещин. Наиболее ранние минеральные трещины выполнены средне-крупнозернистым кальцитом и доломитом. Ширина их изменяется от 15 до $2000~\mu$; объемная плотность ($T_{\rm m}$) достигает $550~{\rm m}^{-1}$. Битумпые трещины обычно унаследуют простирание минеральных, реже рассекают их под

Tаблица 1 Характеристика твердых битумов из нефтеносных площадей Прибалтики по результатам изучения их отражательной способности (R) и показателя преломления (N)

Нефтеносная площадь	Сква- жина	№ oбр.	Горизонт Глубина, м	Условия нахождения битума	R ^в _{ср} , %	N	R _B *, %	Предполагаемый класс и группа битума	
Краснобор- ская	P-2	2-K/1	$\frac{\mathrm{Cm_2ts}}{2015-2013}$	Битум в песчаниках базально цемен- тирует зерна кварца	5,1			Асфальтит — асфальт	
		2-К/3	$\frac{O_1 \text{vl}}{1948, 5}$	Включения черного твердого битума в топких трещинах, секущих доломиты	7,0—7,4	1,761	7,6-7,7	Керит (низший импсонит)	
У шаковская	P-1	1-V/1	$\frac{O_1 \text{vl}}{2151, 4 - 2152, 4}$	Включения черного твердого битума в трещинах, секущих доломиты	7,0—8,0	1,761	7,6-7,4	Керит (низший имп- сонит)	
	P-2	112 y	$\frac{\mathrm{O_2tl}}{2112,5}$	Включения черного битума в трещи- нах и микрокавернах известняков	7,3-7,6	_		Керит (низший импсонит)	
Куликов- ская	P-1	1-₭೪/1	$\frac{\text{Cm}_2 \text{ts}}{2414 - 2416}$	Битум в песчаниках базально цемен- тирует зерна кварца	6,0			Асфальтит — альбертит	
Гусевская	P-7	7-Г/12	O ₁ vl	Битум в трещинах (до 1 см), секущих	7,1 — I генерация	1,774	7,7—7,8	Керит (низший импсо-	
			15701565	доломиты	5,0 — II генерации	-	<u> </u>	нит) Асфальтит — асфальт	
		7-Г/13	$\frac{O_2 tl}{1546}$	Битум в трещинах, секущих извест- ияки	7,5	1,746	7,4-7,5	Керит (низший имп- сонит)	
	P-11	11-Γ/5	S ₁ w 1564—1565	«Лепешка» твердого битума в мергеле	5,7	1,674	6,4	Асфальтит — альбертит	

^{*} Наиболее веронтные значения отражательной способности, соответствующие измеренным показателям преломления,

Спектроскопическая характеристика твердых битумов класса керитов п асфальтенов из нефтей Красноборского и Гусевского месторождений

	$D_{\mathbf{v}}$				2930					
нефтеносная илощадь	сква-	воз- раст	глубина, м	харантеристика обр. *	v == 2930	v == 1700	v == 1600	v = 7 20	D16r0/D2830	
Краснобор- ская	P-1	Cm ₂	1932—1940	Ас ральтены из нефти d ²⁰ 0,8311 (1,81)		0,03	0,10	0,02	0,13	
	P-2	»	1950—1957	4	0,61	0,07	0,20	0,02	0,33	
	»	»	1960—1964		1,14	0,12	0,22	0,07	0,19	
Гусевская	P-6	O_1	1530—1536	, , , , , , ,	0,82	0,10	0,15	0,02	0,18	
,	P-7 »	-	<u> </u>	0,8521 (4,1) Керит Керит (низший	1,46 0,84	 0,08	$0,44 \\ 0,42$	0,08 0,07	$0,30 \\ 0,50$	
Краснобор- ская	P-2			импсонит) То же	0,80	0,10	0,34	0,05	0,42	

^{*} В скобках — содержание асфальтенов (%).

различными углами. Объемная плотность битумных трещин (T_6) варьирует в пределах структур и по разрезу, достигая на отдельных участках, сопряженных с разрывами, $900-1100~{\rm M}^{-1}$ (Красноборская, скв. № 2; Ушаковская, скв. № 1; 3). В этих интенсивно трещиноватых зонах ордовикской покрышки, до заполнения трещин битумом, трещинная проницаемость («палеопроницаемость») составляла $85-110~{\rm мдарси}$. Если учитывать минеральные трещины, то опа была еще выше, т. е. такая покрышка не могла сохранить от разрушения современные кембрийские залежи нефти на Красноборском и Ушаковском месторождениях. Значительно меньше распространены более поздние минеральные и открытые микротрещины, по которым в проходящем у.-ф. свете под люминесцентным микроскопом МЛ-2 наблюдается интенсивное голубое свечение, аналогичное свечению нефтеносных песчаников продуктивного кембрийского горизонта.

Твердые битумы в экранирующих породах распространены шире контуров современных кембрийских залежей (Красноборская, Ушаковская) или остаточных скоплений нефти (Гусевская). Битумные аномалии, как правило, трассируют трещиноватые зоны, связанные с разрывами.

В связи со сложностью выделения битума в чистом виде для диагностики его химическими методами определение класса твердых битумов, выполненное Г. М. Парпаровой и Б. А. Лебедевым, производилось цри помощи углепетрографических методов исследования (табл. 1). Полученные результаты измерений сравнивались с отражательной способностью и показателями преломления ранее изученных образцов твердых битумов разных классов. По этим показателям в залежах выделяются две генерации твердых битумов (табл. 1).

Проведенное Е. М. Файзуллиной изучение химической структуры твердых битумов методом и.-к. спектроскопии показало, что степень окисленности твердых битумов очень незначительна. Судя по спектрам, содержание кислорода составляет не более 1%. По интенсивности полос поглощения 1600 и 2930 см⁻¹ в спектрах твердых битумов было измерено отношение оптических плотностей D_{1600}/D_{2950} , которое, как установлено (1),

является строго определенным для каждого генетического класса. Полуколичественный анализ подтвердил данную диагностику битума по отражательной способности и показателям предомления.

Наличие в ассоциации с дегкой (0.83-0.85) нефтью целой гаммы твердых битумов, часть из которых характеризуется высокой степенью карбонизации, без заметных следов метаморфизма вмешающих пород может быть связано только с неоднократным формированием и разрушением нефтяных залежей. Более того, возможность сохранения современных кембрийских залежей (Красноборская, Ушаковская) в значительной степени определила ранняя генерация (порция) нефти, обусловившая резкое улучшение экранирующих свойств ордовикской покрышки за счет цементации трещин твердым битумом. В этой связи «высокометаморфизованные» разности битумов в породах — покрышки рассматриваются как сделы разрушения первично существовавших скоплений нефти, формирование которых, судя по времени образования вмещающих их ловущей (2), могло происходить не ранее конца каледонского цикла (верхний силур - нижний певон). Однако сам механизм образования высших керитов без участия процессов термального метаморфизма еще не достаточно ясен. Существуют представления (3), что источником таких битумов являются асфальтены нефтей, которые выпадают в виде коллондов при смешении в залежах и каналах миграции легких углеводородов (и в частности жилких газов) с нефтями, относительно обогащенными асфальтенами, подобно тому как происходит осаждение асфальтенов в лабораторных условиях. Проведенное при помощи и.-к. метода сравнительное изучение асфальтенов из кембрийских и ордовикских нефтей Красноборского и Гусевского месторождений и обнаруженных на этих же площадях твердых битумов показало сходство их химической структуры (табл. 2).

Можно предполагать, что при разгрузке углеводородов по трещиноватым зонам в покрышке из первично сформировавшихся скоплений в среднекембрийском горизонте происходило отложение в каналах миграции преимущественно полярных асфальтово-смолистых компонентов. Более легкая часть нефти скапливалась в верхних горизонтах и частично рассеивалась на путях миграции. Последующее изменение битумов происходило, очевидно, при участии новых порций углеводородов, поступавших в ловушку. В процессе дегазации нефтей, которая подтверждается их низкой газонасыщенностью (до 10 м³/м³), а также резким преобладанием в составе газов тяжелых углеводородов над метаном, битумы, цементирующие трещины в покрышке, обогащались асфальтенами и карбоидами за счет потери (выноса) растворимых соединений.

Образование асфальтового слоя в подошве остаточно нефтенасыщенных песчаников среднего кембрия ниже продуктивной части пласта (на Красноборском месторождении этот слой залегает на абсолютных отметках — 1971 — 1976 м, при современном положении водонефтяного контакта на отметках — 1914,5) происходило, очевидно, в ранее предельно заполненной ловушке, т. е. у «древнего» водонефтяного контакта. Отсутствие твердых битумов на ряде площадей Прибалтики (Гаргждайская, Вилькичийская, Плунгеская) может быть связано с одноактивным заполнением этих ловушек последними порциями углеводородов, что подчеркивается геохимическим единством нефтей указанных групп месторождений при различии их физико-химических показателей и неодинаковой степени нефтенасыщенности продуктивного кембрийского пласта.

Всесоюзный нефтяной научно-исследовательский геологоразведочный институт Ленинград

Поступило 27 V 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Е. М. Файзуллина. Химия твердого топлива, № 1 (1969). ² И. С. Гольдберг, Н. М. Руховец, Геология нефти и газа, № 1 (1970). ³ К. Б. Аширов, Тр. Гипровостокнефть, в. 9 (1965).