УДК 519.41

MATEMATUKA

Г. А. ГУРЕВИЧ

О РАНГАХ БЕСКОЭФФИЦИЕНТНЫХ УРАВНЕНИЙ В СВОБОДНОЙ ГРУППЕ

(Представлено академиком П. С. Новиковым 31 V 1971)

Пусть F — свободная группа с образующими $a_1, a_2, \ldots, a_m, \ldots, F_x$ — свободная группа с образующими x_1, x_2, \ldots, x_n и $\mathfrak{U}(x_1, x_2, \ldots, x_n) = \{U_i(x_1, x_2, \ldots, x_n)\}, i = 1, 2, \ldots, t$ — множество слов из F_x . Через

$$\mathfrak{U}(x_1, x_2, \ldots, x_n) = 1 \tag{1}$$

будем обозначать систему бескоэффициентных уравнений $U_i(x_i, x_2, \ldots, x_n) = 1, i = 1, 2, \ldots, t$. Кортеж $\{A_1, A_2, \ldots, A_n\}, A_i \in F$, называется решением ранга k системы уравнений (1), если $U_i(A_1, A_2, \ldots, A_n) \equiv 1, i = 1, 2, \ldots, t$, и ранг подгруппы, порожденной словами A_1, A_2, \ldots, A_n , равеп k. Ранг системы уравнений определяется как максимальный ранг ее решений. Систему слов $T_k = \{P_1(x_i), P_2(x_i), \ldots, P_k(x_i)\}$ из F_x будем называть примитивной, если ее можно дополнить до системы свободных образующих группы F_x . Можно доказать следующий неэффективный критерий того, что система уравнений (1) имеет решение ранга k.

Теорема 1. Система уравнений (1) имеет решение ранга k тогда и только тогда, когда существует примитивная система T_{n-k} такая, что $T_{n-k} \to \mathfrak{U}^*$.

В случае, когда k=n-1 и множество $\mathfrak U$ состоит из одного слова, этот критерий доказывается в $\binom{1}{2}$.

Следующая лемма является обобщением теоремы 5 из (1).

Лемма 1. Пусть $V(x_1, x_2, \ldots, x_n) \to W(x_1, x_2, \ldots, x_n)$ в $\sigma_{x_1}(W) \neq 0$ при некотором l.

Torôa, êc.1 $u T_{h} \rightarrow W$, to $T_{h} \rightarrow V$.

Используя теорему 1 и лемму 1, можно доказать следующую теорему. Теорема 2. Если уравнения $V(x_1, x_2, \ldots, x_n) = 1$ и $W(x_1, x_2, \ldots, x_n) = 1$ имеют общее решение ранга n-1 и $\sigma_{x_l}(V) \neq 0$ при некотором l, то всякое решение первого уравнения является решением второго.

Кортеж $\mathfrak{B}_k = \{B_i(y_1, y_2, \dots, y_k)\}, i = 1, 2, \dots, n,$ будем называть польым кортежем, если слова $B_i(y_1, y_2, \dots, y_k)$ порождают свободную группу с образующими y_1, y_2, \dots, y_k . Если \mathfrak{B}_k — полный кортеж, то множество всевозможных кортежей вида $\{B_i(A_1, A_2, \dots, A_k)\}$, где $A_i \subseteq F$ и ранг кортежа $\{A_1, A_2, \dots, A_k\}$ равен k, будем называть м ножеством з начений кортежа \mathfrak{B}_k .

Теорема 3. Если множество решений ранга k системы уравнений (1) непусто, то его можно разбить на непересекающиеся подмножества, каждое из которых есть множество значений некоторого полного кортежа.

С другой стороны, используя теорему 2 (2), по любому конечному множеству полных кортежей ранга $k,\ k\geq 1$, можно построить бескоэффицивитное уравнение, множество решений ранга k которого есть объединение множеств значений этих кортежей.

^{*} Запись $\Re \to \Re$ означает, что каждое слово из множества слов \Re принадлежит нормальному замыканию слов из \Re .

Теорема 3 оказывается полезной при исследовании ранга некоторых тицов бескоэффициентных уравнений. Так, опираясь на теорему 3 и результат (3), можно доказать следующую теорему о ранге уравнений вида

$$W(x_1^m, x_2^m, \dots, x_n^m) = 1, \quad m > 1.$$
 (2)

 ${
m T}$ е о р е м а 4. Eсли для слова $W(x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 2}, \ldots, x_{\scriptscriptstyle n})$ все числа $\sigma_{\!x_{\scriptscriptstyle 1}}\!(W)$ / d $npu\ i=1,2,\ldots,2k\ \ \ (k<[\ (n+1)\ /\ 2],\ d-$ наибольший общий делитель чисел $\sigma_{x_i}(W)$) взаимно просты с некоторым числом вида $p_i \cdot p_2 \cdot \ldots p_k$ $(p_i \neq 1)$, density m, u $\sigma_{x_{2k+1}}(W) \neq 0$, to pahr ypashehus (2) меньше

При k=1 теорема 4 принимает следующий вид.

Tеорема 5. Eсли $\bar{\partial}$ ля слова $W(x_1,x_2,\ldots,x_n)$ числа $\sigma_{x_1}(W),\;\sigma_{x_2}(W)$ не делят d_W и $\sigma_{x_3}(W) \neq 0$, то ранг уравнения (2) меньше n-1.

Приведем идею доказательства теоремы 5. Теорема 4 доказывается по аналогичной схеме, но несколько более сложно.

Кортеж $\{A_1, A_2, \ldots, A_n\}$ назовем регулярным, если его ранг равен рангу кортежа $\{B_1, B_2, \ldots, B_n\}$, где при $i=1,2,\ldots,n$ слова B_i просты и A_i есть некоторая степень B_i . Из теоремы 3 можно вывести, что если произвольное уравнение имеет решение ранга t, то оно имеет и регулярное решение ранга t. Допустим, что уравнение (2) имеет ранг n-1. Тогда уравнение

$$W(x_1, x_2, \ldots, x_n) = 1$$
 (3)

также имеет ранг n-1. Пусть $\{A_1, A_2, \ldots, A_n\}$ есть регулярное решение ранга n-1 уравнения (2). Тогда $\{A_1^m, A_2^m, \ldots, A_n^m\}$ — регулярное решение ранга n-1 уравнения (3). По теореме 3 найдется полный кортеж $\mathfrak{B}_{n-1}=\{B_i(y_1,\,y_2,\,\ldots,\,y_{n-1})\},\,i=1,\,2,\,\ldots,\,n,$ такой, что всякое его значение есть решение ранга n-1 уравнения (3) и $B_i(C_1,C_2,\ldots,C_{n-1})\equiv A_i^m$ на некотором кортеже $\{C_1,\,C_2,\ldots,\,C_{n-1}\}$ ранга $n-1,\,C_i\equiv F$. Тогда в силу (3) каждое слово $B_i(y_1, y_2, \ldots, y_{n-1})$ есть либо m-я степень, либо степень примитивного элемента. Так как кортеж \mathfrak{D}_{n-1} полный, то только один его элемент может быть т-й степенью. Можно доказать, что существует автоморфизм свободной группы F_y с образующими $y_1, y_2, \ldots, y_{n-1}$, который переводит кортеж \mathfrak{B}_{n-1} , с точностью до перестановки, либо в кортеж

$$\{y_1, Z_2y_2Z_2^{-1}, Z_3y_3Z_3^{-1}, \dots, Z_{n-2}y_{n-2}Z_{n-2}^{-1}, Z_{n-1}y_{n-1}^{n_1}Z_{n-1}^{-1}, Z_n^m\},$$
 (4)

либо в кортеж

$$\{y_1, Z_2 y_2 Z_2^{-1}, Z_3 y_3 Z_3^{-1}, \dots, Z_{n-2} y_{n-2} Z_{n-2}^{-1} Z_{n-1} y_{n-1}^{\eta_1} Z_{n-1}^{-1}, Z_n y_n^{\eta_2} Z_n^{-1}\},$$
 (5)

где Z_i — слова из F_y . Доказательство этого факта основывается на следующих трех леммах.

 Π е м м а 2. Если слово $P(a_i^{s_i}, b_i), s_i > 1, i = 1, 2, ..., t, примитивно, то$ слово $P(a_i, b_i)$ примитивно и найдутся такие слова A_1, A_2, \ldots, A_t , что $\{A_1a_1A_1^{-1}, A_2a_2A_2^{-1}, \ldots, A_ta_tA_t^{-1}, P(a_i, b_j)\}$ примитивная система. Лемма 3. Если ϕ — автоморфизм группы F_y , то множества значений

кортежей \mathfrak{B}_{n-1} и $\{\varphi B_i(y_1, y_2, \ldots, y_{n-1})\}$ совпадают.

Лемма 4. Если кортеж $\{Z_1y_1^{\eta_1}Z_1^{-1}, Z_2y_2^{\eta_2}Z_2^{-1}, \ldots, Z_{n-1}y_{n-1}^{\eta_{n-1}}Z_{n-1}^{-1}, Z_n^m\},$ $r\partial e\ Z_i-c$ лова из F_y , полный, то все η_i , быть может, кроме одного, рав-

Можно проверить, что значения кортёжей (4) и (5) при $y_i = a_i$ не являются решением уравнения (3), но в силу леммы 3 одно из этих значений должно быть решением уравнения (3). Таким образом, предположив,

что ранг уравнения (2) равен n-1, мы получили противоречие. Известно, что ранг уравнения $x_1^{-1}x_2^{-1}x_1x_2=y^k$, k>1 равен 1 (см., например, (4)). Следующай теорема является обобщением этого результата. Теорема 6. Hycть $W(x_i, y_j) = (x_1, x_2, \ldots, x_n) M(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y_4, y_2, \ldots, y_h),$

где (x_1, x_2, \ldots, x_n) — произвольный коммутатор букв x_1, x_2, \ldots, x_n и $\sigma_{\boldsymbol{y}_l}(\boldsymbol{M}) \neq 0$ при некотором l. Тогда, если слово $U(x_i, y_i)$ не примитивно, то ранг уравнения $W(x_i, y_i) = 1$ не превосходит n + k - 2.

Слово V назовем неприводимым словом, если из $P \to V$ следует, что $P \sim V^{\pm 1}$. Для доказательства теоремы 6 достаточно показать, что слово $W(x_i, y_j)$ неприводимо, а затем воспользоваться теоремой 1. Неприводимость слова $W(x_i, y_j)$ доказывается с помощью следующих четырех лемм.

Лемма 5. Если ϕ — произвольный автоморфизм группы F_x , то слово $V \in F_x$ неприводимо тогда и только тогда, когда слово ϕV неприводимо.

Следующие две леммы выводятся из теоремы Магнуса «о свободе».

Лемма 6. Любой примитивный элемент неприводим.

Следствие. Если слово $P(x_1, x_2, \ldots, x_n)$ примитивно и $P(1, x_2, x_3, \ldots, x_n) \equiv 1$, то слово $P(x_1, x_2, \ldots, x_n)$ сопряжено либо с буквой x_1 , либо с x_1^{-1} .

Отметим, что из этого факта непосредственно выводится теорема Чанга о внутренних автоморфизмах свободной группы с двумя образующими (5).

Лемма 7. Если

$$V(x_1, x_2, \ldots, x_n, z, y_1, y_2, \ldots, y_k) \rightarrow Q_1(x_1, x_2, \ldots, x_n, z) Q_2(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_k),$$

 $\sigma_z(V)=0$ и буква y_1 существенно входит в V, то $[z^lVz^l]_z^*
ightarrow [Q_1, Q_2]_z^*$ при некотором целом l, где через $[T]_z^*$ обозначена запись слова T ($\sigma_z(T)=0$) в образующих $z^jx^iz^{-j},$ $z^jy^iz^{-j}$ нормальной подгруппы, порожденной буквами $x_1,$ $x_2,$..., $x_n,$ $y_1,$ $y_2,$..., y_k в группе с образующими $x_1,$ $x_2,$..., $x_n,$ $y_1,$ $y_2,$..., $y_k,$ z.

Лемма 8. Пусть буквы г и в не принадлежат алфавиту

$$x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y_1, y_2, \ldots, y_k.$$
 (6)

Tог ∂a слово $W(x_i, y_j)$ можно перевести в слово

$$SM(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y_1, y_2, \ldots, y_k)$$

последовательностью преобразований, каждое из которых есть либо преобразование вида $V\Rightarrow [V]_z^*$, либо свободный автоморфизм, тождественный на буквах из алфавита (6).

Московский государственный университет им. М. В. Ломоносова

Поступило 20 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. Steinberg, Mich. Math., 18, № 1 (1971). ² Г. А. Гуревич, Всесоюзн. алгебраический коллоквиум (резюме сообщений), Гомель, 1969. ³ G. Baumslag, Algebra, 2, № 3 (1965). ⁴ G. Baumslag, Acta math., 104, 217 (1960). ⁵ B. Chang, Mich. Math., 7, № 1 (1960).