УДК 518.9 **MATEMATUKA**

С. И. ЗУХОВИЦКИЙ, Р. А. ПОЛЯК, М. Е. ПРИМАК

ОБ ОДНОЙ ОБЩЕЙ ЗАДАЧЕ ОТЫСКАНИЯ РАВНОВЕСИЯ

(Представлено академиком Л. В. Канторовичем 6 VI 1972)

Многие задачи математического программирования, теории игр и математической экономики являются задачами отыскания состояния равновесия.

В предлагаемой работе приводится весьма общая равновесно-экстремальная задача, охватывающая как частные случаи различные модели математической экономики, а также строится специальный метод отыскания равновесия в одной модели производства, обобщающей классическую модель А. Вальда.

1. Пусть в эвклидовом пространстве E^n задано выпуклое замкнутое и ограниченное множество Ω и точечно-множественное отображение A, ставящее в соответствие каждой точки $x \in \Omega$ множество $A(x) \subset \Omega$, и пусть на $\Omega \times \Omega$ определена функция $\Phi(x, y)$. Поставим задачу отыскания точки $x^* \in \Omega$, для которой

$$\max \{\Phi(x^*, y) \mid y \in A(x^*)\} = \Phi(x^*, x^*). \tag{1}$$

Для существования точки $x^* \in \Omega$, удовлетворяющей (1), достаточно, чтобы для каждой точки $x \in \Omega$ множество $A(x) \neq \phi$ было выпукло и замкнуто, отображение A было полунепрерывно снизу, а функция $\Phi(x, y)$ была непрерывна по совокупности аргументов и вогнута по у при каждом фиксированном $x \in \Omega$.

Как нетрудно убедиться, задачей типа (1) является сформулированная в (1) модель абстрактной социальной системы, рассмотренная в (2) общая равновесно-экстремальная задача, проблема отыскания состояния равновесия по Нэшу (3) вогнутой игры многих лиц, модель Эрроу – Дебре, а также ряд других моделей математической экономики.

2. Остановимся на некоторых подходах к решению общей задачи (1) и некоторых ее частных случаев.

Рассмотрим функцию $F(x, y) = \Phi(x, y) - \Phi(x, x)$ и пусть

$$\max \{F(x,y) | y \in A(x)\} = F(x,\theta(x)), \quad \theta(x) \in A(x).$$

Если выполнены условия: 1) функция F(x, y) выпукла по x при любом $y \in \Omega$; 2) $F(x, \theta(x)) \geqslant F(x, \theta(z))$ $\forall (x, z) \in \Omega \times \Omega$, то функция $\varphi(x) = F(x, \theta(x))$ выпукла. Если, кроме того, множество $\Omega_0 = \{x \in \Omega \mid x \in \Omega \mid x \in \Omega \}$ $\in A(x)$ выпукло, то решением задачи (1) является любое решение следующей вадачи выпуклого программирования:

$$\min \left\{ \varphi(x) \mid x \in \Omega_0 \right\} = 0. \tag{2}$$

Для отыскания этого решения может быть использован следующий процесс:

$$x^{\scriptscriptstyle 0} \in \Omega_{\scriptscriptstyle 0}, \quad x^{\scriptscriptstyle k+1} = P_{\scriptscriptstyle \Omega^{\scriptscriptstyle 0}}(x^{\scriptscriptstyle k} - t_{\scriptscriptstyle k}
abla_{\scriptscriptstyle x} F(x,\; \theta(x^{\scriptscriptstyle k}) \,) \,|_{x=x^{\scriptscriptstyle k}}),$$
 где $t_{\scriptscriptstyle k}$ выбирается из обычных условий

$$\sum_{k} t_{k} = \infty, \quad t_{k} \to 0, \quad t_{k} \geqslant 0, \tag{*}$$

а $P_{\alpha\theta}(\cdot)$ — оператор проектирования на множество Ω_{θ} .

Сходимость последовательности $\{x^k\}$ к x^* следует из теоремы 1 работы (4).

Если выполнены условия: 1) функция F(x, y) вогнута на $\Omega \times \Omega$ по совокупности переменных; 2) отображение A вогнуто, τ . e.

$$\alpha A(x_1) + (1-\alpha)A(x_2) \subset A(\alpha x_1 + (1-\alpha)x_2), \quad 0 \leq \alpha \leq 1,$$

то функция $\varphi(x)$ вогнута, а множество Ω_0 выпукло. Решением задачи (1) в этом случае является каждая точка, реализующая минимум $\varphi(x)$ на Ω_0 .

3. Перейдем теперь к рассмотрению изученной в (2) общей равновесно-

экстремальной задачи как частного случая задачи (1).

Пусть на $\Omega \times \Omega$ заданы функции $\Phi(x, y), \Phi_1(x, y), \dots, \Phi_m(x, y),$ непрерывные по совокупности переменных и вогнутые по y. Введем отображение

$$A(x) = \{ y \in \Omega \mid \Phi_j(x, y) \ge 0, j = 1, ..., m \}.$$

Тогда равновесно-экстремальная задача (2), т. е. задача отыскания $x^* \in \Omega$, для которой $\Phi_j(x^*, x^*) \geqslant 0, \ j=1,\ldots,m,$ и

$$\max \{\Phi(x^*, y) | y \in \Omega, \ \Phi_j(x^*, y) \ge 0, \ j = 1, \dots, m\} = \Phi(x^*, x^*), \quad (3)$$

сведется, очевидно, к задаче (1).

Заметим далее, что если $A(x)=\Omega$ для $\forall x\in\Omega,$ то задача (1) сводится к задаче отыскания точки $x^*\in\Omega$ такой, что

$$\max \{\Phi(x^*, y) | y \in \Omega\} = \Phi(x^*, x^*), \tag{4}$$

т. е. к задаче, для решения которой в (5) и (6) построено несколько вычислительных методов.

Связь между задачей (3) и задачей типа (4) устанавливает следующее Утверждение (2). Если точка \tilde{x} является решением задачи типа (4) для функции

$$\Phi_0(x, y) = \min \left\{ \Phi(x, y) - \Phi(x, x), \Phi_1(x, y), \dots, \Phi_m(x, y) \right\}$$
 (5)

и если существует точка $\bar{y} \in \Omega$, для которой

$$\Phi_j(\tilde{x}, \, \bar{y}) > 0, \quad j = 1, \, \dots, \, m, \tag{6}$$

то \tilde{x} является также решением задачи (3).

Однако воспользоваться методами (⁵, ⁶) для решения задачи (3) путем решения задачи (4) с функцией (5), вообще говоря, нельзя, так как функция (5) не удовлетворяет свойствам, необходимым для применимости указанных методов. Ниже формулируются дополнительные условия, при выполнении которых можно использовать методы (⁵, ⁶) для решения задачи (3).

Пусть

- 1) функции $\Phi_{j}(x, x), j = 1, ..., m$, вогнуты на Ω ;
- 2) $\hat{\exists} \bar{x} \in \Omega$, $\Phi_j(\bar{x}, \bar{x}) > 0$, $j = 1, \ldots, m$;
- 3) существуют определенные на Ω положительные функции $\sigma_j(x)$, такие, что

$$g_j(x) = \nabla_y \Phi_j(x, y) |_{y=x} = \sigma_j(x) \nabla_x \Phi_j(x, x), \quad j = 1, \ldots, m.$$

Тогда при выполнении этих условий каждая точка равновесия задачи типа (4) с функцией $\Phi(x, y)$, рассматриваемой на множестве $\widetilde{\Omega} = \{x \in \Omega \, | \, \Phi_j(x, x) \geqslant 0, \ j = 1, \ldots, m\}$, является также точкой равновесия задачи (3).

4. Остановимся еще на несколько другом возможном подходе к решению задачи (3). Будем в дальнейшем считать, что функции $\Phi(x, y)$, $\Phi_i(x, y)$, $j = 1, \ldots, m$, выпуклы по y и поставим задачу отыскания точки $x^* \in \Omega$, для которой

min
$$\{\Phi(x^*, y) | y \in \Omega, \Phi_j(x^*, y) \le 0, j = 1, ..., m\} = \Phi(x^*, x^*).$$
 (3')

Поскольку при фиксированном x^* задача (3') превращается в задачу выпуклого программирования с функцией Лагранжа $L(x^*, y, u) =$ $=\Phi(x^*,\,y)+\sum_{j}u_j\Phi_j(x^*,\,y)$, то для $g(x^*,\,u^*)=
abla_yL(x^*,\,y,\,u^*)ig|_{y=x^*}$, по теореме Куна - Таккера, имеем

$$\min \{ (g(x^*, u^*), y - x^*) | y \in \Omega \} = 0.$$
 (7)

Приведем основанный на критерии (7) вычислительный метод для решения задачи (3).

Пусть $\Phi_0(x, y) = \Phi(x, y) - \Phi(x, x)$. Будем в дальнейшем считать, что все функции $\Phi_j(x,y), j=0,1,\ldots,m$, неотрицательны на $\Omega \times \Omega$. Введем функции

$$f_k(x, y) = \left(\sum_{j=0}^m \Phi_j^k(x, y)\right)^{1/k}; \quad g_k(x) = \nabla_y f_k(x, y)|_{y=x};$$

$$F_{h}(x) = \min \{(g_{h}(x), y - x) | y \in \Omega\} = (g_{h}(x), \theta_{h}(x) - x) = (g_{h}(x), \zeta_{h}(x)).$$

В качестве исходного приближения выберем $x^0 \subseteq \Omega$. Пусть уже построены приближения x^1, \ldots, x^k . Новое (k+1)-е приближение вычисляем по фор-

$$x^{k+1} = x^k + t_k \zeta_k(x^k). (8)$$

Имеет место

Теорема. Пусть выполнены условия:

- 1) Ω строго выпуклый компакт;
- 2) для матрицы Якоби $H_j(x)$ вектор-функции $G_j(x)$ $\nabla_y \Phi_j(x, y)|_{y=x},$ $j=0,\ 1,\ \dots,\ m,\ cyществует\ \mu_j>0$ такое, что выполнены неравенства

$$(H_i(x)\zeta, \zeta) \geqslant \mu_i(\zeta, \zeta) \quad \forall x \in \Omega, \quad \forall \zeta \in E^n;$$

3) существует положительная на Ω функция $\sigma(x)$ такая, что

$$G_i(x) = \sigma(x) \nabla_x \Phi_i(x, x), \quad j = 0, 1, \dots, m;$$

тогда существует положительная константа С такая, что при

$$t_k = \min \{1, C / (k \| \zeta_k(x^k) \|^2) \}$$

последовательность $\{x^k\}$ содержит сходящуюся κx^* подпоследовательность, которую удается выделить из $\{x^h\}$.

В случае $\sigma(x) = 1$ задача (3) эквивалентна задаче выпуклого программпрования, а процесс (8) близок методу (7) решения задачи выпуклого программирования.

5. В заключение рассмотрим одну задачу типа (3), являющуюся обобщением классической модели А. Вальда.

Пусть в экономической системе производится n продуктов и используется r видов ресурсов. Величина $a_{ij}, i=1,\ldots,r; j=1,\ldots,n$, указывает затраты i-го вида ресурса, необходимые для производства одной единицы ј-го продукта.

Пусть функция $f_j(x) \equiv f_j(x_1,\ldots,x_j,\ldots,x_n), j=1,\ldots,n$, задает цену единицы j-го продукта при условии, что продукты произведены в количествах $x_1, \ldots, x_i, \ldots, x_n$; функция $a_i(v) \equiv a_i(v_1, \ldots, v_i, \ldots, v_r)$ указывает объем ресурсов і-го вида при условии, что цены ресурсов соответственно равны $v_1,\ldots,v_i,\ldots,v_r$. Пусть далее $A=(a_{ij})$;

$$f(x) = (f_1(x), \ldots, f_n(x)); \quad a(v) = (a_1(v), \ldots, a_r(v)).$$

Вектор $(x^*; v^*)$ будем называть решением рассматриваемой модели производства, если выполнены условия:

- 1) $Ax^* \le a(v^*)$; $x^* \ge 0$; $\max\{(f(x^*), x) | Ax \le a(v^*), x \ge 0\} = (f(x^*), x^*)$; 2) $A^Tv^* \ge f(x^*)$; $v^* \ge 0$; $\min\{(a(v^*), v) | A^Tv \ge f(x^*), v \ge 0\} = (a(v^*), v^*)$.

Для решения приведенной задачи используем двойственный метод X. Удзавы (8), который, как оказалось, сходится при естественных предположениях, не столь обременительных, как сформулированные в предыдущих пунктах. Отметим, что возможность использования этого метода для решения классической модели А. Вальда была указана Б. Г. Питтелем

Для упрощения изложения включим ограничения $x \ge 0$ в число ограничений общего вида. Для этого введем обозначения

$$w = (v_1, \ldots, v_r; u_1, \ldots, u_n); \ \widetilde{a}(w) = (a_1(v), \ldots, a_r(v); \ \widetilde{0, \ldots, 0}); \ \widetilde{A} = \begin{pmatrix} A \\ -E \end{pmatrix}.$$

В этих обозначениях задача заключается в отыскании вектора (\hat{x}, \hat{w}) , пля которого

$$\max \{ (f(\hat{x}), x) \mid \widetilde{A}x \leq \widetilde{a}(w) \} = (f(\hat{x}), \hat{x});$$

$$\min \{ (\widetilde{a}(\hat{w}), w) \mid \widetilde{A}^T w = f(\hat{x}), w \geq 0 \} = (\widetilde{a}(\hat{w}), \hat{w}).$$

В качестве исходного приближения выбираем $w^0 \ge 0$ и из системы $f(x) = A^T w^0$ находим x^0 . Пусть уже проделано k шагов алгоритма и найдены приближения $w^0, x^0, \ldots, x^{k-1}, w^k$. В качестве x^k берем решение системы

$$f(x) = \widetilde{A}^T w^h$$
.

Затем полагаем

$$\overline{w}^{k+1} = w^k + t_k (\widetilde{A}x^k - \widetilde{a}(w^k)),$$

причем величину шага t_h выбираем из условий (*), и

$$w^{k+1} = egin{cases} \max{\{0, \, \overline{w}^{k+1}\}}, & \text{если } \|\max{\{0, \, \overline{w}^{k+1}\}}\| \leqslant R, \\ rac{R \max{\{0, \, \overline{w}^{k+1}\}}}{\|\max{\{0, \, \overline{w}^{k+1}\}}\|}, & \text{если } \|\max{\{0, \, \overline{w}^{k+1}\}}\| > R, \end{cases}$$

где R удовлетворяет условию $R \geqslant \|w\|$.

Сходимость описанного процесса трактует

Теорема. Если выполнены условия:

1) непрерывная вектор-функция f(x) удовлетворяет условию сильного убывания

 $(f(x_1) - f(x_2), x_2 - x_1) \geqslant \gamma ||x_1 - x_2||^2;$

2) ограниченная вектор-функция a(v) удовлетворяет условию Липши- ца и условию возрастания

$$(a(v_1) - a(v_2), v_1 - v_2) \ge 0;$$

3) матрица A не содержит нулевых строк и столбцов, то последовательность $\{x^k\}$ содержит сходящуюся к x^* подпоследовательность.

Московский инженерно-строительный институт им. В. В. Куйбышева

Поступило 24 IV 1972

Украинский филиал Научно-исследовательского института планирования и пормативов

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Debreu, Proc. Nat. Acad. Sci. U.S.A., 38 (1952). ² М. Е. Примак, ДАН, 200, № 3 (1971). ³ Д. Нэш, Сбори. Матричные игры, М., 1961. ⁴ Б. Т. Поляк, ДАН, 174, № 1 (1967). ⁵ С. И. Зуховицкий, Р. А. Поляк, М. Е. Примак, Экономика и математич. методы, 7, № 6 (1967). ⁶ В. А. Волконский, С. А. Иванков, Сибирск. матем. журн., 11, № 4 (1970). ⁷ Р. А. Поляк, ДАН, 200, № 3 (1971). ⁸ Х. Удзава, Сборн. Исследования по линейному и нелинейному программированию, ИЛ, 1962.