Доклады Академии наук СССР 1973. Том 209, № 2

УДК 661.666+53.092

ФИЗИЧЕСКАЯ ХИМИЯ

В. И. КАСАТОЧКИН, Л. Е. ШТЕРЕНБЕРГ, М. Е. КАЗАКОВ, В. Н. СЛЕСАРЕВ, Л. В. БЕЛОУСОВА

ТЕРМИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ КАРБИНА ПОД ДАВЛЕНИЕМ

(Представлено академиком Л. Ф. Верещагиным 9 VIII 1972)

Ранее было установлено, что процесс алмазообразования под давлением существенно зависит от природы исходного углерода (¹). Особый интерес представляли образцы карбина, которые не преобразовывались в алмаз в условиях каталитического синтеза (2). Карбин, получаемый при взаимодействии ацетилена с раствором хлорпой меди и последующем нагревании в вакууме, представляет собой новую аллотропную форму углерода и состоит из смеси кристаллической и аморфной фаз углерода с цепным строением макромолекул полиинового (— $C = C - C_n$), и кумуленового (=C=C), типов (3, 4). В природе новая аллотропная форма кристаллического углерода была обнаружена в кратере Рис (Бавария) в виде белых прослоек в графитовых частицах (5) и в каменном метеорите (6). Ее образование, по-видимому, было связано с высокими давлениями и температурой при падении метеорита. Позднее эта форма углерода была синтезирована в виде серебристо-белых отложений на пирографитовых инастинках в условиях нагревания (2550° К) в вакууме (7) и путем осаждения паров углерода при облучении графита лазерным пучком света (8). Влизкое сходство рентгеновских и электронных дифракционных картин образнов углерода в указанных работах свидетельствует о сходстве их консталлеческой структуры и химического строения.

В настоящем сообщении приводятся результаты рептгенографического исследования структурных преобразований карбина под давлением при новышенных температурах. Опыты проводились в камере высокого давления, разработанной в Инстнтуте физики высоких давлений АН СССР, с независимым обогревом (2). Давление определено с номощью фазовых переходов бария (59 кбар) и висмута (89 кбар) (3), температура измерялась хромель-алюмелевой и платина-платина-родиевыми термопарами.

В табл. 4 приведены межилоскостные расстояния, наблюдаемые на рентгенограммах углерода из кратера Рис (5) и исходного карбина, а в табл. 2 — карбина, нодвергнутого действию высоких давлений и температур. Рептенограмма исходного образда карбина, характеризующаяся совекунностью относительно широких линий, указывает на высокую дисперсность кристаллической фазы. Неряду с этим имеются два широких гало, свидетельствующие о паличии вморфной фазы углерода. Для образдов, обработанных под давлением, характериа рептгеновская дифракционная картина с отсутствием гало и резкими дифракционными лициями, отвечающая значительно большим размерам кристаллитов по сравнению с исходным образдом. Это приводит к выводу, что в процессе обработки происходит кристаллизация аморфной фазы и рекристаллизация мереталлической фазы.

Анализ рептенограммы поликристаллического природного углерода ирывод авторов (5) и генсогональной ячейке кристаллической решетки с играметрами a=8,948 и c=14,078 Å. Одиако микродифранционные точечные электронограммы монокристаллов карбина указывают на существование двух α - и β -генсогональных присталлических модификаций нег той слиотронной формы углерода (4).

Углерод из кратера Рис								<u> </u>	Карбин исходный					
по данным (°) a=8,918, c=11,078 Å				$egin{array}{l} lpha ext{-MOЦИФ.} \\ a=8,92, \\ c=15,56 \end{array}$		$egin{aligned} & eta ext{-модиф.} \ & a = 8.21, \ & c = 7.68 \end{aligned}$		$d_{lpha ext{KCII}},$	I	α-модиф.		β-модиф.		
d _{эксп} , Å	1	hkl	d _{расч} , Å	hkl	d _{расч} , Å	hal	<i>а</i> раеч	Å	1	hui	^Л расч, Å	h.il	d $^{\mathrm{ac}_{4}}$,	
4,47 4,26 4,12	0.c. 0.c. 0.c.	110 111 103 —	4,465 4,256 4,014	110 103 —	4,460 4,264 —	_ 	4,122	4,47 4,26 4,13 3,87	с*. c*. ср.* с*,	110 103 — 200	4,450 4,264 3,864	_ 110 	$\frac{-}{4,122}$	
3,71 3,22 3,03 2,04 2,55	ср. ср. сл. сл. с.	201 	3,728 3,206 2,985 2,925 	203 240 — 304	3,072 2,929 2,5/2	201 211	3,233 	3,64 3,22 2,92 2,68	ср ² . ср. сл. сл.	210	2,923	111 201 — 210 —	$ \begin{array}{r} 3,634 \\ 3,233 \\ -\\ 2,697 \\ -\\ -\\ \end{array} $	
2,46 $2,23$ $2,24$ $2,40$	ср. с. ср.	213 	$ \begin{array}{c c} 2,482 \\$	302 220 107	$\begin{bmatrix} 2,4/4 \\ -1 \\ 2,232 \\ -108 \end{bmatrix}$	301	2,278	$ \begin{array}{c} 2,46 \\ 2,39 \\ \hline 2,24 \\ 2,13 \\ \hline - \end{array} $	60. сл. сл. ср.	362 220 206 	$ \begin{array}{c c} 2,444 \\\\ 2,230 \\ 2,130 \\ \end{array} $	103	2,401 	
1,983 1,910 1,946 1,370	CI. CJ. CJ.	$ \begin{array}{r} 206 \\ 401 \\ \hline -227 \\ 7416 \end{array} $	$\begin{bmatrix} 2,007 \\ 1,915 \\ \\ 1,495 \end{bmatrix}$	= = 530	1,488	310 311 330	1,980 1,916 — 1,373	$ \begin{array}{c c} 1,94 \\ - \\ 4,66 \\ 1,50 \\ 1,37 \end{array} $	ср. ср. сл.	400 103 \$30	1,923 1,664 1,488	330	1,373	
1,289	сл.	$ \left\{ \begin{array}{l} 228 \\ 600 \\ 506 \\ 336 \end{array} \right. $	1,370 1,289	600	1,288	_	1,373	1,29	о.сл.	600	1,288	_		
1,26 1,197 1,184	сл. ср.	$ \left\{ \begin{array}{l} 337 \\ 523 \\ 427 \end{array} \right. $	1,257 1,197 1,483	426	1,264	423 600	1,194 1,189	1,26 1,20	о.сл. сл. —		1,26	206 _	1,204	
1,184 1,080 0,864	ср. сл. сл. сл.	$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $	1,032	_	0,867	603	1,080	1,12 1,06 0,86	сл. о.сл.	440 622 900	1,115 1,061 0,858			

^{*} Ширины славаются.

На основании расчетов рентгенограмм* и электронных дифрациюнных картин было предположено существование двух α - и β -гексагональных ячеек с параметрами $a_{\alpha}=8,93$, $c_{\alpha}=15,36$ Å и $a_{\beta}=8,25$, $c_{\beta}=7.68$ Ä. Исходя из указанных нараметров двух ячеек, была пропидицирована рентгенограмма природного белого углерода из кратера Рис по опубликованному авторами ($^{\circ}$) перечню межилоскостных расстояний. Результаты ноказывают (табл. 1), что ряд дифракционных линий, для которых авторы получили наибольшее расхождение $d_{\text{эксп}}$ и $d_{\text{расч}}$, следует отпести за счет вилючения β -фазы в природном углероде. Таким образом, природный углерод согласно полученым данным не представляет собой индивидуальной кристаллической фазы и включает по крайней мере две кристаллические модификации.

Найденные нами параметры ячейки α -фазы близки к параметрам ячейки природного углерода в отличие от опубликованных рапее (4) параметров ячеек α - и β -модификаций карбина с другими кристаллографическими осями, выбранными на точечных электронограммах базисных илоскостей (hk0) монокристаллов. Если атомные цепочки макромолекул углерода располагаются вдоль гексагональной оси кристалла, то величина

^{*} Выражаем благодарность А. Л. Чистякову за оказанную нам помощь в индицировании рентгенограмм на ЭВМ.

Карбин											
	70 кбар, 1500°, 3 ман., катализатор										
$d_{ m awen}, \ m A$	I	α-мод	иф.	β-модиф.				α-модиф.		β-модиф.	
		hkl	^d расч, Å	ħkl	^d pacч, Å	^d э∴сп, Å	I	hkl	d _{pacч} ,	* At	°pac-1, Å
4,13 3,72 3,64 	сл. ср. — — — — — — — — — — — — — — — — — — —	201	3,749	1410	4,420 2,634 2,060 1,847 1,528 1,373 1,274 1,087	4,13 3,73 3,64 2,94 2,86 2,46 2,37 2,22 2,094 2,07 	ср. ср. ср. ср. ср. сл. ср. сл. сл. ср. сл. сл. ср. сл. сл. ср. ср. сл. ср. ср. ср. ср. ср. ср. ср. ср. ср. ср	201 240 241 302 220 107 	3,749 3,929 2,871 2,444 2,232 2,108 1,864 1,438 1,264 1,264 1,264	1410 1414 	4,420 3,634
1,04	о. сл.			406	1,010	1,04	сл.		_	406	1,045

	падам	антан		Природный алмаз							
	бар,	1800°, 5				α-мο	диф.	β-модиф.			
d _{эксп} , Ã		а-модиф.		β-модыф.		d _{erch} ,	$_{I}$		ı.		1
	I	hxt	^д расч, А	hk!	d _{расч,} Å	Å		hkl	^d расч, Å	hkl	d _{расч} , Å
4,13 3,73 2,64	cp.	201	3,749	110 - 111	4,120 3,634	4,13	cp.	_		11 0	4,120
$\begin{bmatrix} 3,64 \\ - \end{bmatrix}$	ер. —		_		3,031	_	_	_			
$\begin{bmatrix} 2,87 \\ 2,85 \end{bmatrix}$	СИ. СП.	211 105	$2,871 \\ 2,854$		_			_	_	_	
2,34	о. сл.			300	$2, \frac{-}{376}$	-		_		_	
2,21	о. сл.	220	2,232	_	_	_				_	
2,07	сл.	_		220	2,060	$\begin{bmatrix} 2,063 \\ 2,045 \end{bmatrix}$	c. o. c.	— Алмаз		220	2,060
1,97	о. сл.	-	_	310	1,978	2,015		IIIMas		_	
1,85	o. c.i.	402	1,864			_					
1,80	СЛ.			222	1,812	_			_	_	
1,65	о. сл.	316	1,644		_	_				_	
1,52	cp.	_	_	411	$1,\overline{52}$	_		_	_	_	
	_	_		_		1,38	— 0. сл.		_	330	1,373
1,28	сл.	_	_	006	1,280	, — \ — \			_	_	
			_	_		$\frac{-}{1,255}$	c.	— Алмаз	_	_	
1,085	о. сл.	_	_	$\frac{-}{226}$	1,087	_		_	_	_	
1,04	сл.		_		1,045	1,072 1,040	c. cp.	Алмаз	_	406	1,015

параметра c ячейки включает 12 углеродных атомов в α -модификации и 6 атомов в β -модификации c длиной двухатомпого звена цепи, равной 2,56 Å. В соответствии c мотивом расположения макромолекул в проекции на базисную плоскость, определяемого по точечной электропограмме монокристалла (4, 8), в элементарную ячейку α -модификации входит 144 атома и β -модификации — 72 атома. Рассчитанные плотности $\delta_{\alpha}=2,675$ и $\delta_{5}=3,115$ г/см³.

Как показывает анализ рентгенограммы образца карбина, обработанного под давлением 90 кбар при $t_{\rm ofp}$ 1800° и $\tau=5$ мин. (табл. 2), паряду с процессом рекристаллизации происходит почти полное преобразование менее плотной α -фазы в более плотную β -фазу. Вместе с тем в образце наблюдается относительно большое количество кристаллической фазы графита, возникновение которой, как следует предполагать, происходит за счет пространственно ститых поличновых углеродных цепей в аморфной фазе исходного карбина. В табл. 2 не включены линии графита.

Рептгенограмма образца карбина, обработалного в присутствии катализатора, отличается значительно большим числом дифракционных липий остаточной α-фазы. Отсюда следует, что присутствие катализатора не способствует в какой-либо заметной мере процессу перехода α-фазы карбина в β-фазу. Необходимо при этом учитывать более низкие температуру

н давление обработки.

Представляет интерес тот факт, что возникающая графитовая фаза не переходит в алмаз в условиях каталитического синтеза. Это, вероятно, связано со структурными особенностями графитовой фазы и наблюдаемым несовершенством ее кристаллической решетки, характерным для неполно графитированного углерода, влияющими на кинетику процесса алмазообразования (2). Наряду с карбином были также изучены рентгенограммы образцов полиадамантана, обработанного при 9 кбар и 1800° в течение 5 мин. Полиадамантан был получен бромированием адамантана и последующим взаимодействием дибромироизводных с металлическим натрием *. Глак показывают результаты (табл. 2), в указанных условиях обработки полиадамантан переходит преимущественно в β-фазу карбина и графит с совершенной структурой.

Мы паблюдали дифракционные линии β-фазы карбина в качестве примесных на рентгенограммах природных порошков алмаза (табл. 2), свидетельствующие о наличии некоторого количества ее в алмазном порошке. Это указывает на осуществление условий синтеза β-фазы карбина в при-

родном процессе алмазообразования.

Результаты исследования приводят к общему выводу об устойчивости кристаллической ценной аллотронной формы углерода под давлением 90 кбар при 1800° и переходе менее устойчивой в этих условиях, кристаллической α-модификации в более устойчивую β-модификацию. Содержащаяся в исходном карбине аморфная фаза углерода преобразуется в графит с несовершенной кристаллической решеткой и часть ее в кристаллическую фазу ценной аллотронной формы.

Авторы благодарят Л. Ф. Верещагину за внимание к работе.

Поступило 25 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Л. Ф. Верещагин, Я. А. Калашников и др., Совр. пробл. физ. хим., 1, М., 1968, стр. 173. 2 В. И. Касаточкин, Л. Н. Штерепберг и др., ДАН, 194, № 4, 801 (1970). 3 В. И. Касаточкин, О. И. Егорова, Ю. Г. Асеев, ДАН, 151, № 1, 125 (1963). 4 В. И. Касаточкин А. М. Сладков и др., ДАН, 177. № 2, 358 (1967). 5 А. Еl. Goresy, G. Donney, Science, 161, 363 (1968). 7 Г. П. Вдовыкин, Геохимин, № 9 (1969). 7 А. Grenville Whittaker, Р. L. Кіп-tner, Science, 165, 389 (1969). 8 В. И. Касаточкин, М. Е. Казаков и др., ДАН, 201, № 5, 1104 (1971). 9 Л. Ф. Верещагин, Е. В. Зубова и др., ДАН, 169, 74 (1966).

^{*} Полиадамантан синтезирован Ю. П. Кудрявцевым в отделе полимеров Института элементоорганических соединений АН СССР.