УДК 519.9+575.1

MATEMATHKA

В. М. КИРЖНЕР

О ПОВЕДЕНИИ ТРАЕКТОРИЙ НЕКОТОРОГО КЛАССА ГЕНЕТИЧЕСКИХ СИСТЕМ

(Представлено академиком В. И. Смирновым 5 VI 1972)

В настоящей заметке мы будем следовать определениям и обозначениям работы Ю. И. Любича (¹). Исследованию поведения траекторий бесконечной популяции при условии панмиксии и отсутствии мутаций, миграции и отбора был посвящен ряд работ. Теорема о сходимости для гаплоидных популяций гамет (а следовательно, и диплоидных популяций зигот) была впервые получена Х. Гейрингер в (²). О. Райерсол (³) предложил для описания эволюции специальный метод дифференциальных операторов, который он применил к доказательству теоремы о сходимости траекторий для любого числа локусов, жестко сцепленных с половой X-хромосомой. Траектория для одного локуса, частично сцепленного с полем, была исследована О. Кемптхорном в (³).

Метод дифференциальных операторов был развит Ю. И. Любичем в (¹), и были получены, в частности, дальнейшие результаты о поведении траекторий аутосомных (неполиплоидных) популяций. В настоящей заметке эти результаты распространяются на общие диплоидные генетические системы с половой дифференциацией, включая частичное сцепление с полом. Число локусов с тем или иным типом полового сцепления может быть любым, число аллелей в каждом локусе произвольно. Для этого класса систем нами получена теорема о сходимости траекторий при панмиксии и отсутствии отбора (мутации, однако, допускаются), описано множество равновесных состояний и вычислены предельные состояния траекторий через начальные. Далее, получены явные выражения для эволюционных корней и на этой основе исследована скорость сходимости к равновесию. В заключение мы выписываем явную формулу эволюции в линейном приближении по мерам неравновесности. Полную формулу мы не приводим ввиду ее чрезвычайной громоздкости.

Множество локусов $L=\{1,2,\ldots,l\}$ разобьем на подмножества следующим образом: в множество L_{x} входят локусы представленные только в X-хромосоме; в множество L_{y} — локусы, представленные только в Y-хромосоме; в множество L_{xy} — локусы, представленные в обеих половых хромосомах; в множество L_{A} — локусы аутосом. Положим

$$L_f = L_X \cup L_{XY} \cup L_A$$
, $L_m = L_Y \cup L_{XY} \cup L_A$.

Пусть $m_i \ge 2$ — число аллелей в i-м локусе. Обозначим через a_k^i , $i=1,2,\ldots,l;\ k=1,2,\ldots,m_i,\ k$ -й ген i-го локуса. Определим женские и мужские гаметы как мономы, имеющие соответственно вид

$$g_f = \prod_{i \in L_f} a_{k_i}^i, \quad g_m = \prod_{i \in L_m} a_{k_i}^i.$$

Множества женских и мужских гамет обозначим Γ_f и Γ_m соответственно. Через \Re_f и \Re_m обозначим вещественные линейные пространства с базисами Γ_f и Γ_m , а через σ_f и σ_m — стандартные симплексы этих пространств. Состояние рассматриваемой популяции будем отождествлять с элементами

G множества $\sigma_f \times \sigma_f \times \sigma_m$, которое содержится в линейном пространстве $\Re = \Re_f \times \Re_f \times \Re_m$. Каждое состояние популяции G есть набор (G(1), G(2), G(3)) состояний различных частей популяции: G(1) — состояние женских гамет материнского происхождения, G(2) — состояние женских гамет отцовского происхождения, G(3) — состояние мужских гамет.

Кроссинговеры в раздельнополой системе описываются двумя распределениями сцепления: $\mathfrak{P}_f(L)$ и $\mathfrak{P}_m(L)$, заданными на множествах L_f и L_m соответственно. Отметим, что распределение сцепления $\mathfrak{P}_m(L)$ не симметрично, т. е. вероятности $p_m(u|v)$ и $p_m(v|u)$, вообще говоря, не равны.

Определим в пространстве \Re умножение $G \times H = E$ по формулам

$$E(1) = \sum_{u \mid v} \frac{1}{2} p_f(u \mid v) \{ D_u G(1) D_v H(2) + D_u H(2) D_v G(1) \},$$

$$E(2) = \sum_{u \mid v} p_m(u \mid v) D_u G(1) D_v D_{L_Y} H(3),$$

$$E(3) = \sum_{u \mid v} p_m(u \mid v) D_u H(3) D_v D_{L_X} G(1).$$
(1)

Обозначим полученную алгебру через $\mathfrak{A}(L; \mathfrak{F}_{f}(L), \mathfrak{R}_{m}(L))$. Используя (1), можно записать уравнение эволюции без учета мутаций в виде

$$G_{n+1} = G_n \times G_n. \tag{2}$$

Мутации в случае одного локуса описываются стохастической по столбцам матрицей переходов $M = \|\mu_{ij}\|$, где μ_{ij} — вероятность перехода j-го гена в i-й. Предположим, что мутации в каждом локусе происходят независимо от остальных. В этом случае их можно описать матрицей

$$M=\bigotimes_{j=1}^l M_j,$$

где M_j — матрица мутаций в j-м локусе, символ \otimes означает тензорное (кронекеровское) произведение. Уравнение эволюции с учетом мутации имеет вид

$$\widetilde{G}_{n+1} = M(\widetilde{G}_n \times \widetilde{G}_n), \tag{3}$$

где $\{\widetilde{G}_\pi\}$ — граектория популяции с учетом мутации. Обозначим через $\mathfrak{P}_{\pi}(K)$ п $\mathfrak{P}_{\pi}(K)$ индуцированные распределения сцепления на множествах локусов K_π п K_π соответственно.

 \mathfrak{A} е м м а 1. Оператор \widehat{D}_K является гомоморфизмом алгебры $\mathfrak{A}(L;\,\mathfrak{P}_f(L),\,\mathfrak{P}_m(L))$ в алгебру $\mathfrak{A}(K;\,\mathfrak{P}_f(K),\,\mathfrak{P}_m(K))$.

 \mathbb{I} емма 2. Йинейный оператор M является гомоморфизмом алгебры $\mathfrak{A}(L;\mathfrak{P}_t(L),\mathfrak{P}_m(L))$.

Теорема 1. Если матрицы M_i , $j=1,2,\ldots,l$, не имеют собственных значений с модулем единица, отличных от $\lambda=1$, то все траектории сходятся.

 $T\ e\ o\ p\ e\ m\ a\ 2.\ \ {\it Для}\ \ {\it того}\ \ {\it чтобы}\ \ {\it состояние}\ \ {\it G}\ \ {\it было}\ \ {\it равновесным, необходи-мо}\ \ {\it u}\ \ {\it достаточно, чтобы}\ \ {\it oнo}\ \ {\it umeno}\ \ {\it вud}$

$$G\left(1\right)=G\left(2\right)=\,M^{\infty}\prod_{i\in L_{f}}H_{i},\quad G\left(3\right)=\,M^{\infty}\prod_{i\in L_{m}}H_{i},$$

 $r\partial e H_i$ — произвольное состояние i-го локуса.

Следствие. Траектория, определенная начальным состоянием G_0 , сходится к равновесному состоянию G_{∞} :

$$G_{\infty}(1) = G_{\infty}(2) = M^{\infty} \prod_{i \in L_{f} \cap L_{m}} \left\{ \frac{1}{2} \widehat{D}_{i} G_{0}(1) + \frac{1}{4} \widehat{D}_{i} G_{0}(2) + \right.$$

$$+ \frac{1}{4} \, \widehat{D}_{i}G_{0}(3) \Big\} \prod_{i \in L_{X}} \Big\{ \frac{2}{3} \, \widehat{D}_{i}G_{0}(1) + \frac{1}{3} \, \widehat{D}_{i}G_{0}(2) \Big\} ,$$

$$G_{\infty}(3) = M^{\infty} \{ \widehat{D}_{L_{Y}}G_{0}(3) \} \prod_{i \in L_{f} \cap L_{m}} \Big\{ \frac{1}{2} \, \widehat{D}_{i}G_{0}(1) + \frac{1}{4} \, \widehat{D}_{i}G_{0}(2) + \frac{1}{4} \, \widehat{D}_{i}G_{0}(3) \Big\} .$$

Перейдем теперь к описанию эволюционного спектра в системе L_f . Аналогичные формулы для системы L_m мы приводить не будем. Обозначим через $Q_0(L)$ матрицу

$$Q_{0}\left(L\right) = \begin{pmatrix} \frac{p_{f}\left(L\right)}{2} & \frac{p_{f}\left(L\right)}{2} & 0\\ p_{m}\left(L\mid\phi\right) & 0 & p_{m}\left(\phi\mid L\right)\\ p_{m}\left(\phi\mid L\right) & 0 & p_{m}\left(L\mid\phi\right) \end{pmatrix},$$

а через $Q_1(L)$ матрицу

$$Q_{1}\left(L\right) = \begin{pmatrix} \frac{p_{f}\left(L\right)}{2} & \frac{p_{f}\left(L\right)}{2} \\ p_{m}\left(L\mid\boldsymbol{\phi}\right) & 0 \end{pmatrix}.$$

С каждой подсистемой $K \subseteq L$ свяжем некоторую часть спектра матриц $Q_0(K)$ или $Q_1(K)$. Именно, если $K_X = K_Y = \phi$, то обозначим через $\pi^{\alpha}(K)$. $\alpha \le 3$, собственные значения матрицы $Q_0(K)$ отличные от 0 и 1. Если $K_X \cup U$ $K_Y \ne \phi$, то обозначим через $\pi^{\alpha}(K)$, $\alpha \le 2$, собственные значения матрицы $Q_1(K)$, отличные от 0 и 1. Будем считать, что во всех случаях $\pi^1(K) = \max \pi^{\alpha}(K)$.

Будем рассматривать всевозможные разбиения $K_1|\dots|K_j$ всевозможных подсистем $K \subset L_f$, удовлетворяющие условию $|K_i| \ge 1$, $i=1,2,\dots,j$, причем равенство $|K_i| = 1$ разрешается лишь тогда, когда $K_i \subset L_{xy}$. Такие разбиения будем называть допустимыми. С допустимым разбиением $K_1|\dots|K_j$ свяжем множество всевозможных наборов $\{\pi^{\alpha_i}(K_i)\}_{i=1}^j$. Каждый такой набор определяется некоторым набором индексов $\alpha = \{\alpha_i\}_{i=1}^j$, который мы будем также называть допустимым. Для упрощения записи положим $\pi^{\alpha}(K_i) = \pi^{\alpha_i}(K_i)$, $\alpha = \{\alpha_i\}_{i=1}^j$.

 ${
m Teopema}$ 3. Эволюционный спектр в системе L_t состоит из значений

$$\lambda_{K_i \dots j K_j}(\mathbf{v}, \alpha) = \left(-\frac{1}{2}\right)^{\mathbf{v}} \prod \pi^{\alpha}(K_i), \quad \lambda_{\phi} = 1,$$
 (4)

где $K_1|\dots|K_j-$ любое допустимое разбиение, $\alpha-$ любой допустимый набор индексов, $v\leqslant |L_x \searrow \cup K_i|$.

Скорость сходимости к равновесию характеризуется коэффициентом стабилизации к. Для общего распределения сцепления верна следующая Теорема 4. Коэффициент стабилизации равен

$$\varkappa = \max_{|K| \leq 2} \pi^1(K), \tag{5}$$

где максимум берется по всем K, для которых |K|=2, если $K \not\subset L_{xy} \cup L_x$, $u \mid K \mid \leqslant 2$, если $K \subset L_x \cup L_{xy}$.

Используя (5), можно получить оценку для коэффициента стабилизации, зависящую только от числа локусов.

Теорема 5. Имеет место неравенство *

$$\varkappa \geqslant \left[\frac{l-1}{2}\right] \left(2\left[\frac{l-1}{2}\right]+1\right)^{-1}.$$

^{*} Квадратные скобки означают целую часть числа.

Выпишем теперь линейное приближение трасктории в системе L_t . При этом удобно вести отсчет от поколения G_2 . Обозначим через $\overline{E_q{}^s(G_2)}$ меры неравновесности первой степени:

$$\overline{E_Q^s(G_2)} = (\widehat{D}_Q G_2(s) - \widehat{D}_Q G_\infty(s)) D_Q G_\infty(s).$$

Через $A_{\pi}{}^{\mathrm{q}}(i,\,\alpha,\,s)$ обозначим решения следующей системы уравнений:

$$\sum_{\alpha} A_K^{Q}(i, \alpha, s) = (-1)^{|K \setminus Q|} \delta_{s, i},$$

$$[Q(K) - \lambda_K(\alpha)] A_K^{Q}(\alpha, s) = 0,$$

где $Q(K) \equiv Q_0(K)$, если $K \cap L_x = \phi$, и $Q(K) \equiv Q_1(K)$, если $K \cap L_x \neq \phi$; $\overrightarrow{A}_{\kappa}^{\,\, Q}(\alpha,s) = \{A_{\kappa}^{\,\, Q}(i,\alpha,s)\}_{i}.$ Теорема 6. Трасктория, линеаризованная по мерам неравно**в**есност**и**

первой степени, имеет вид

$$+\left(-\frac{1}{2}\right)^{n-2}\sum_{j\in L_{X},\;|j|=1}\frac{G_{n}(i)\approx G_{\infty}\left(i\right)+}{E_{j}^{1}\left(G_{2}\right)+\sum_{K,\;\alpha}\left[\pi^{\alpha}\left(K\right)\right]^{n-2}\left[\sum_{Q\subset K}A_{K}^{Q}\left(i,\;\alpha,\;s\right)\overline{E_{Q}^{s}\left(G_{2}\right)}\right].}$$

Автор выражает благодарность Ю. И. Любичу за руководство работой.

Физико-технический институт низких температур Академии наук УССР Харьков

Поступило 10 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. И. Любич, УМН, 26, в. 5, 51 (1971). ² Н. Geiringer, Ann. Math. Statist., 15, 25 (1944). ³ О. Reiersöl, Math. Scand., 10, 25 (1962). ⁴ О. Kempthorne, A Introduction to Genetic Statistics, 1957.