Доклады Академии наук СССР 1973. Том 209, № 2

УДК 513.831

t i

МАТЕМАТИКА

И. К. ЛИФАНОВ

О РАЗМЕРНОСТИ НОРМАЛЬНЫХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 17 V 1972)

К. Нагами (1) построил пример нормального пространства Z, для которого верны равенства *:

$$\operatorname{ind} Z = 0$$
, $\operatorname{dim} Z = 1$, $\operatorname{Ind} Z = 2$.

В данной заметке доказано, что для любых трех чисел l, m, n ($n \ge l, n \ge m$ и $m \ne 0$) существует нормальное пространство $\Pi(l, m, n)$, для которого верны равенства

ind
$$\Pi(l, m, n) = l$$
, dim $\Pi(l, m, n) = m$, Ind $\Pi(l, m, n) = n$.

1. Определение 1. Пространство X назовем связным относительно пары непересекаю щихся замкнутых множеств F_1 и F_2 , если их нельзя отделить в X пустым множеством.

Лемма 1. Нормальное пространство X имеет Ind $X \ge 1$ тогда и только тогда, когда существует пара замкнутых подмножеств F_1 и $F_2(F_1 \cap F_2 = \phi)$, относительно которых X связно.

Лемма 2. Пусть X_1 — подпространство пространства X, а X_2 — подмножество X_1 , связное относительно пары замкнутых в нем множеств F_1 и F_2 ($F_1 \cap F_2 = \phi$). Пусть G — такое открытое множество пространства X, что $G \cap X_2 \neq \phi$, $F_1 \subset G$ и $F_2 \subset X_2 \setminus \overline{G}$.

Тогда выполняется одно из следующих условий:

1) существует такое множество U, открытое в X_1 , что $U \cap X_2 \neq \phi$ и $U \subset \Gamma$ р $G = \overline{G} - G$, или

2) $\overline{G \cap X_1} \cap X_1 \setminus \overline{G} \cap X_2 \neq \phi$.

Доказательство. Пусть $U=Z_1\setminus \overline{(G\cap X_1}\cup \overline{X_1\setminus G})$. Тогда множество U открыто в X_1 и $U\subset \Gamma$ р G. Если $U\cap X_2=\phi$ и $\overline{G\cap X_1}\cap X_1\setminus \overline{G}\cap X_2=$ $=\phi$, то X_2 не связно относительно F_1 и F_2 $(F_1\cap F_2=\phi)$, так как $\overline{G\cap X_1}\cap X_2=F_1$, а $\overline{X_1\setminus \overline{G}}\cap X_2=F_2$. Пришли к противоречию.

- 2. Пусть X и Z паракомпактны. Обозначим через $Y_x(X,Z)$ пространство, получаемое из топологического произведения $X \times Z$ следующим образом: окрестности точек множества $x \times Z$ оставляем прежними, а все точки пространства $X \times Z$, не входящие в это множество, объявляем открытыми. Отметим, что пространство $Y_x(X,Z)$ паракомпактно. Проектирование f_x пространства $Y_x(X,Z)$ на пространство X является почти открытым ** отображением в каждой точке множества $x \times Z$. Далее, Ind $Y_x(X,Z) = \text{Ind } Z$, $\dim Y_x(X,Z) = \dim Z$ и ind $Y_x(X,Z) = \text{ind } Z$.
- $\dim Y_x(X,Z)=\dim Z$ и ind $Y_x(X,Z)=\operatorname{ind} Z$. 3. Предложение 1. Пусть P- паракомпактное пространство, $S\subset P-$ замкнутое множество, и пусть для каждой окрестности U множества S найдется всегда открыто-замкнутая окрестность $V\subset U$.

** Отображение f пространства Y на пространство X называется почти открытым в точке $y \in Y$, если для любой окрестности O точки y имеется такая окрестность $V \subseteq O$ этой точки, что множество f(V) является окрестностью точки j(y).

^{*} ind — индуктивная малая размерность, определяемая по границам окрестностей точек. dim — размерность, определяемая через конечные открытые покрытия, Ind — большая индуктивная размерность, определяемая по границам окрестностей замкнутых множеств.

Пусть Ind $S = m \geqslant 0$, и пусть для каждого замкнутого $Q \subseteq P$, непересекающего S, Ind $Q \leqslant n$. Пусть, далее, существует такое непрерывное отображение φ пространства P на S, что $\varphi(x) = x$ для $x \in S$.

 $Tor\partial a \operatorname{Ind} P \leq m+n$.

Предложение 1 является переформулировкой теоремы 4.3 П. Вопенки (2) для наракомпактных пространств.

4. Пусть X и Z паракомпактны. Пусть мощность пространства X и мощность его базы $G = \{A_{\alpha}\}, \ \alpha \in \Omega$, не превосходят τ , где τ — регулярное кардинальное число. Возьмем дискретное множество N точек мощности не меньшей τ , причем каждой точке $x \in X$ в соответствие поставлено подмножество N_x точек, равномощное множеству N и $N_{x_1} \cap N_{x_2} = \phi$ при $x_1 \neq x_2$. Каждому числу $n \in N$ в соответствие поставим пространство $Y_n(X, Z) = Y_x(X, Z)$, если $n = n_x \in N_x$ и дискретное пространство $Y_n(X, Z)$, непрерывно отображающееся на X для $n \in N$ $\bigcup_{x \in X} N_x$. Обозначим через f_n естественное отображение $Y_n(X, Z)$ на X.

Определим пространство $\Pi(X, f_n, Y_n(X, Z), N) = \Pi$ на дискретной сумме X и $\{Y_n(X, Z), n \in N\}$ следующим образом:

1) все $Y_n(X, Z)$ полагаются открыто-замкнутыми,

2) окрестностями точек $x \in X$ считаем множества $O \cup \{f_n^{-1}(O), n \in N \setminus K\}$, где O — окрестность точки x в X, а K — произвольное конечное подмножество множества N.

Замечание 1. Если для любой точки $p \in \Pi$ положить $\varphi(p) = x$ при $p = x \in X$ или p = (x, z) принадлежащей одному из $Y_n(X, Z)$, то легко проверяется, что φ является непрерывным отображением пространства Π на X.

Предпожение 2. Пространство $\Pi(X, f_n, Y_n(X, Z), N) = \Pi$ является паракомпактом.

Доказательство. Вначале заметим, что пространство Π является хаусдорфовым. Пусть теперь $w = \{G_{\flat}\}, \beta \in B,$ — произвольное открытое покрытие пространства Π . Для каждой точки $x \in X$ возьмем окрестность Ox \cup \cup $\{f^{-1}(Ox), n \in N \setminus K_x\}$, вписанную в некоторый элемент покрытия w. В открытое покрытие $\{Ox\}$ пространства X впишем локально-конечное покрытие $\{\mathcal{V}_y\}, y \in C$. Тогда система открытых в пространстве Π множеств $\Gamma_{\gamma} = \mathcal{V}_{\gamma} \cup \{f_n^{-1}(\mathcal{V}_{\gamma}), n \in N \setminus K_x\}, \gamma \in C$. где x — какая-нибудь такая точка пространства X, что $\mathcal{V}_{\gamma} \subset Ox$, локально конечна. Множество $\Pi \setminus \bigcup_{\gamma \in C} \Gamma_{\gamma} = F$ замкнуто в Π . Обозначим $F_n = F \cap Y_n(X, Z)$. Ясно, что для $n = n_x \in Nx$ множество $(x \times Z)_{n_x}$ либо лежит в F_{n_x} , либо с ним не пересекается. Возьмем произвольное множество Γ_{γ} . Тогда множество $\Gamma_{\gamma} \cap F_{n_x}$ или равно множеству $(x \times Z)_{n_x}$ или пусто, причем если выполняется первая возможность,

то $x \in \Gamma$ р \mathscr{V}_{γ} . Мпожество этих точек x дискретно в X, поэтому, так как X — наракомпакт, можно взять такие окрестности O^*x для каждой указанной точки x, что они попарно не пересекаются и образуют локально конечную систему множеств в X. Теперь вместо множества Γ_{γ} возьмем открытое мно-

жество $\Gamma_{\gamma}' = \Gamma_{\gamma} \setminus (\bigcup_{n_{\chi}} (f_{n_{\chi}}^{-1}(O^*x) \cap F_{n_{\chi}}))$, тде $F_{n_{\chi}} \cap \Gamma_{\gamma} = x \times Z$. Полученная система открытых множеств $\{\Gamma_{\gamma}'\}$, $\gamma \in C$, также локально конечна в Π , а

 $Y_n(X, Z) \searrow \bigcup_{\gamma \in C} \Gamma_{\gamma'}$ — открыто-замкнутое подмножество для любого $n \in N$, являющееся паракомпактом. Поэтому систему открытых мпожеств $\{\Gamma_{\gamma'}\}$ можно дополнить до открытого локально конечного покрытия всего прост-

ранства П, вписанного в покрытие w.
Замечание 2. Из показательства п

Замечание 2. Из доказательства предложения 2 следует, что для любой окрестности U пространства X в Π существует открыто-замкнутая окрестность V пространства X такая, что $V \subset U$.

<u>Предложение</u> 3. *Пусть U и V — открытые в* П множества и $\overline{U \cap X} \cap \overline{V} \cap \overline{X} = \phi$. Тогда $\overline{U} \cap \overline{V}$ содержит часть, гомеоморфную пространству Z. Это предложение доказывается почти так же, как теорема 2.4 в статье (2).

 Π редложение 4. Для пространства Π выполняются следующие соотношения:

$$\dim \Pi = \max (\dim X, \dim Z),$$

 $\operatorname{Ind} \Pi \leq \operatorname{Ind} X + \operatorname{Ind} Z.$

Первое соотношение следует из теоремы Даукера (³). Второе соотношение следует из п. 2, предложения 1, замечаний 1 и 2.

5. Теорема 1. Если пространство X паракомпактно $c \dim X > 0$, то существует паракомпакт $\Pi \supset X$, обладающий следующими свойствами:

1) dim $\Pi = \dim X$;

2) Ind $\Pi \leq 3 \operatorname{Ind} X$;

3) существует такое замкнутое множество F в Π и окрестность U этого множества в Π , что любая окрестность $G \subseteq U$ этого множества содержит в своей границе замкнутое подмножество, гомеоморфное пространству X.

Доказательство. Возьмем пространство $\Pi' = \Pi(X, f_n, Y_n(X, Z), N)$. По предложению 2, это пространство паракомпактно. Из предложения 4 имеем

$$\dim \Pi' = \dim X$$
, $\operatorname{Ind} \Pi' \leq \operatorname{Ind} X + \operatorname{Ind} X = 2\operatorname{Ind} X$.

Теперь возьмем пространство

$$\Pi = \Pi(\Pi', f_m, Y_m(\Pi', X), M).$$

Оно также паракомпактно и

$$\dim X = \dim \Pi$$
, $\operatorname{Ind} \Pi \leq \operatorname{Ind} \Pi' + \operatorname{Ind} X \leq 3\operatorname{Ind} X$.

Так как dim X>0, то и Ind X>0. Следовательно, существуют два замкнутых множества F и Φ в $X(F\cap \Phi=\phi)$, относительно которых X связно. Пусть теперь U — такая окрестность множества F в II, что $\Phi \subseteq X \setminus \overline{U}$ и $G \subseteq U$ — произвольная окрестность множества F. Тогда, по лемме 2 $(X_2 = X, X_4 = \Pi', X = \Pi)$, могут выполняться два условия:

1) существует такое открытое в Π' множество $\mathscr V$, что $\mathscr V\cap X\neq \emptyset$ и $\mathscr V\subset$

 \subset Гр G, или

2) $G \cap \Pi' \cap \overline{\Pi'} \setminus \overline{G} \cap X \neq \phi$.

Если выполняется условие 1), то такое окрытое множество содержит коино X; если выполняется условие 2), то, по предложению 3, $\overline{\mathscr{V}} \cap \overline{\Pi} \setminus \overline{\mathscr{V}}$ содержит копию пространства X. Но так как $\overline{\mathscr{V}} \cap \overline{\Pi} \setminus \overline{\mathscr{V}} \subseteq \Gamma p \mathscr{V}$, то это и доказывает теорему.

6. Теорема 2. Пусть теперь n-n роизвольное натуральное число. Существует паракомпакт X такой, что

$$\operatorname{ind} X = 0$$
, $\operatorname{dim} X = 1$, $\operatorname{Ind} X = n$.

Доказательство. Пусть P — пример Р. Роя (5). Пространство P метризуемое и

 $\operatorname{ind} P = 0$, $\operatorname{dim} P = \operatorname{Ind} P = 1$.

Более того, каждое открытое множество этого пространства содержит гомеоморфный образ всего пространства. Поэтому, как следует из леммы 2 и предложения 3, для пространства $\Pi = \Pi(P, f_m, Y_m(P, P), U)$ выполняется равенство $\operatorname{Ind} \Pi = 2$.

Из предложения 4 следует, что dim $\Pi=1$. Легко показать, что ind $\Pi=0$.

Предположим теперь, что для $n \ge 2$ существует такой паракомпакт $\Pi(0, 1, n)$, что $\operatorname{Ind}\Pi(0, 1, n) = n$, $\dim\Pi(0, 1, n) = 1$, $\operatorname{ind}\Pi(0, 1, n) = 0$. Тогда, но теореме 1, существует такой паракомпакт Y, содержащий пространство $\Pi(0, 1, n)$, что

 $\dim Y = \dim \Pi(0, 1, n) = 1, \quad \text{Ind } Y > \text{Ind } \Pi(0, 1, n) = n,$

и Ind Y < 3 Ind $\Pi(0, 1, n)$. Так как ind $\Pi(0, 1, n) = 0$, то можно считать и ind Y = 0.

По определению большой индуктивной размерности, в паракомпакте Y для любого натурального числа $m \, (n < m \leqslant \operatorname{Ind} Y)$ можно взять такое замкнутое подмножество Φ , что $\operatorname{Ind} \Phi = m > 0$ и потому $\dim \Phi \geqslant 1$. Очевидно, $\operatorname{ind} \Phi = 0$.

Теорема 2 доказана.

7. T е о р е м а 3. Для любых чисел $m \le n$ существует такое нормальное пространство X, что

$$\operatorname{ind} X = 0$$
, $\operatorname{dim} X = m$, $\operatorname{Ind} X = n$.

Доказательство. Ю. М. Смирнов (4) построил пример пормального пространства Y с ind Y=0, dim $Y=\operatorname{Ind} Y=m$ для любого целого $m\geqslant 0$. Поэтому достаточно взять дискретное объединение этого пространства Y и пространства $\Pi(0,1,n)$. Будем обозначать это пространство через $\Pi(0,m,n)$.

8. Пространства $\Pi(l, m, n)$, указанные во введении, строятся следующим образом: если $l \le m$, то возьмем дискретное объединение l-мерного куба I' и пространства $\Pi(0, m, n)$; если $l \ge m$, но $l \le n$, то возьмем дискретное объединение бикомпакта Y c dim Y = m, ind Y = l (см. $\binom{2}{2}$) и пространства $\Pi(0, 1, n)$. В этом случае пространство $\Pi(l, m, n)$ является паракомпактом.

Поступило 3 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ K. Nagami, J. Math. Soc. Japan, 18, 158 (1966). ² П. Вопсика, Czechoslov. Math. J., 8, 319 (1958). ³ С. Н. Dowker, Quart. J. Math. Oxford, Ser. 6, 101 (1955). ⁴ Ю. М. Смирнов, ДАН, 123, 40 (1958). ⁵ Р. Roy, Bull. Am. Math. Soc., 68, 609 (1962).