УДК 513.831

MATEMATHKA

л. А. ЛЮКСЕМБУРГ

О ТРАНСФИНИТНЫХ ИНДУКТИВНЫХ РАЗМЕРНОСТЯХ

(Представлено академиком П. С. Александровым 9 VI 1972)

В п. 1 и 2 мы рассматриваем лишь метрические пространства, если не оговорено противное. Под размерностью ind (соответственно Ind) мы понимаем малую индуктивную (соответственно большую индуктивную) трансфинитную размерность. Для пространств X и Y, diam $Y < \infty$, через C(X, Y) обозначим пространство всех непрерывных отображений $f: X \to Y$ с метрикой $d(f_1, f_2) = \sup_{\substack{x \in X \\ x \in X}} \rho(f_1(x), f_2(x))$, где ρ — метрика в Y. Заметим, что пространство C(X, Y) полно, если Y полно.

1. Теорема 1. Пусть в пространстве X со счетной базой фиксиро-

вана счетная система замкнутых множеств C_i , $i=1,2,\ldots$

Tогда множество Ψ таких гомеоморфизмов пространства X в гильбертов куб I^ω , что для каждого і выполняются равенства

a) Ind
$$C_i = \text{Ind } \overline{f(C_i)}$$
, 6) ind $C_i = \text{ind } \overline{f(C_i)}$,

содержит всюду плотное множество типа $G_{\mathfrak{d}}$ в пространстве $C(X, I^{\mathfrak{o}})$.

 ${f B}$ случае, когда размерности ${
m Ind}\, C_i$ конечны, эта теорема была дока-

зана Гуревичем (1).

Следствие 1. Для любого пространства X со счетной базой, имеющего размерность Ind X, существует компактификация cX такая, что

Ind
$$cX = \text{Ind } X$$
, ind $cX = \text{ind } X$.

 Π е м ма 1. Π усть в пространстве X фиксированы два замкнутых множества A и B и $C=A\cap B$.

Tогда множество Φ отображений f пространства X в компакт Z таких, что

$$\overline{f(A)} \cap \overline{f(B)} = \overline{f(C)},$$

имеет тип $G_{\mathfrak{d}}$ в пространстве C(X,Z).

Лемма 2. Если в лемме 1 $Z=I^{\omega}$, то множество Φ всюду плотно в C(X,Z).

Пемма 3. Для любого пространства Z, имеющего трансфинитную

размерность Ind Z. справедливы следующие утверждения:

а) Ind $Z \le \alpha$ тогда и только тогда, когда для любых дизъюнктных замкнутых множеств F и G, $F \cup G \subseteq P(Z)$ * существует разделяющая их в Z перегородка C размерности Ind $C < \alpha$;

б) ind $Z \leq \beta$ тогда и только тогда, когда для любой точки p и замкнутого множества $F \not\ni p$, $\{p\} \cup F \subseteq P(Z)$, существует разделяющая их в Z ne-

регородка C размерности ind $C < \beta$ ($\alpha \ge \beta \ge \omega_0$).

Следствие 2. Если X— пространство, имеющее трансфинитную размерность $\operatorname{Ind} X$, и Y— его S-слабо бесконечномерное подмножество (4), то $\operatorname{Ind} Y \leq \operatorname{Ind} X$.

^{*} Множеством P(Z) мы называем такое замкнутое подмпожество прострапства Z, что $Z \setminus P(Z)$ есть объединение всех открытых копечномерных подмпожеств в Z (14). По теореме Скляренко (3) P(Z) — компакт, если Z — S-слабо бесконечномерно.

Ind $X = \alpha$, ind $X = \beta$ ($\alpha \ge \beta \ge \omega_0$) $u : \lambda_i = \{U_{\tau}^i : \alpha \ge \beta \ge \omega_0\}$ Лемма 4. Пусть $\mathbf{\gamma} \in \Gamma\}, \ i=0,\ 1,$ — две такие системы открытых в X множеств, что для всех $\gamma \subseteq \Gamma$ имеем:

- 1) Ind Fr $U_{\nu}^{0} < \alpha$,
- 2) ind Fr $U_{\nu}^{1} < \beta$.
- 3) λ_0 образует большую базу P(X) в X^* , а λ_1 образует базу $P(X)^{**}$ в Х.

Tогда, если f — отображение пространства X в компакт Z, являющееся гомеоморфизмом на $P(\bar{X})$ и удовлетворяющее условиям:

- 4) Ind $\overline{\operatorname{Fr} f(U_{\gamma}^0)} = \operatorname{Ind} \operatorname{Fr} U_{\gamma}^0$,
- 5) ind $\overline{\operatorname{Fr} f(U_{\mathbf{v}}^{\mathbf{1}})} = \operatorname{ind} \operatorname{Fr} U_{\mathbf{v}}^{\mathbf{1}}$,
- 6) $\operatorname{Fr} \overline{f(U_{\mathbf{v}}^i)} = \overline{f(\operatorname{Fr} U_{\mathbf{v}}^i)}, i = 0, 1,$
- 7) $f(P(X)) = P(\overline{f(X)}),$

To a) Ind $\overline{f(X)} = \text{Ind } X$, δ) ind $\overline{f(X)} = \text{ind } X$.

Tе орема 2. Пусть X есть пространство веса τ и $\{C_i\}$, $i=1,\ 2,\ldots,$ счетная система замкнутых множеств.

Tогда множество Ψ таких равномерно-нульмерных отображений f пространства X в гильбертов куб I^{ω} , что для каждого і выполняются условия:

- a) Ind $C_i = \operatorname{Ind} \overline{f(C_i)}$,
- 6) ind $C_i = \operatorname{ind} \overline{t(C_i)}$,
- в) ограничение f на $P(C_i)$ есть гомеоморфизм,

содержит всюду плотное множество типа $G_{\mathfrak{d}}$ в пространстве $C(X, I^{\mathfrak{o}})$.

Если отказаться от требования ind $C_i \geqslant \omega_0^2$ для некоторых i, то утверждение теоремы 2 останется верным, если выбросить равенство б) для этих і. Эта теорема опирается на следующее утверждение.

 Π емма 5. Eсли в пространстве X дана счетная система замкнутыxмножеств C_i , $i=1, 2, \ldots$, конечной размерности, то множество R равномерно-нульмерных отображений $f: X \to I^{\omega}$ таких, что $\operatorname{Ind} C_i = \operatorname{Ind} f(C_i)$ для всех $i=1,\,2,\ldots$ содержит всюду плотное множество типа $G_{\mathfrak{d}}$ в пространстве $C(X, I^{\omega})$.

Следствие 3. Для пространства X, имеющего размерность $\operatorname{Ind} X$ u $\operatorname{ind} X \geqslant \omega_0^2$. существует бикомпактное расширение bX того же веса, что uX, причем выполняются равенства:

a) Ind bX = Ind X, 6) ind bX = ind X.

Если не требовать, чтобы $\operatorname{ind} X \geqslant \omega_0^2$, то выполняется только усло-

Заметим, что требование ind $X \ge \omega_0^2$ нельзя отбросить, как показывает **при**мер Роя (5).

Утверждение а) следствия 3 было независимо получено Б. А. Пасынковым для произвольных нормальных пространств (6).

Теорема 3. Пусть в пространстве Х лежит пространство У со счетной базой, имеющее размерность ind Y.

Tогда в X существует такое множество G типа $G_{\mathfrak{d}}$, что $Y \subset G$ и ind G == ind Y.

Это утверждение обобщает теорему Тумаркина (8).

Следствие 4. Любое пространство $ar{X}$ со счетной базой имеет пополнение \widetilde{X} размерности ind $\widetilde{X} = \operatorname{ind} X$.

^{*} Это означает, что для любых замкнутых дизъюнктных множеств F и G, лежащих в P(Z), существует U_{γ^0} такое, что $F \subset U_{\gamma^0} \subset X \setminus G$.
** Вазой множества A мы называем фундаментальную систему окрестностей

в точках A.

Теорема 4. Для любого пространства У, имеющего размерность Ind Y и лежащего в пространстве X, существует такое множество G runa G_{δ} , $Y \subset G \subset X$, uro Ind G = Ind Y.

Если Ү имеет счетную базу, то можно дополнительно потребовать, что-

бы ind G = ind Y.

Следствие 5. Любое пространство Y, имеющее размерность Ind Y, допускает пополнение Y такое, что $\operatorname{Ind} \widetilde{Y} = \operatorname{Ind} Y$.

 $\mathit{Ecnu}\ \mathit{Y}\ \mathit{umeer}\ \mathit{cчетную}\ \mathit{базу},\ \mathit{то}\ \mathit{можно}\ \mathit{notpefosate},\ \mathit{чтобы}\ \mathit{u}\ \mathrm{ind}\ \mathit{\widetilde{Y}}=$ = ind Y.

Следующий пример показывает, что существование размерности Ind является существенным требованием в теореме 1 и следствии 1.

 Π р и м $\dot{\mathrm{e}}$ р полного пространства X со счетной базой, имеющего размерность ind $X = \omega_0$ и не содержащегося ни в каком компакте той же размерности ind.

Заметим, что если ind $Y < \omega_0$ и Y имеет счетную базу, то по теореме Гуревича (1) существует компакт $\widetilde{Y} \supset Y$ с условием ind $\widetilde{Y} = \operatorname{ind} Y$.

 Π остроение. Пусть Z есть дискретная сумма кубов I^n , $n=1,\ 2,\ldots$ Выберем в каждом куюе t^n две точки u и v , v , v ных (n-1)-мерных гранях. Положим $U=\bigcup\limits_{n=1}^\infty \{u^n\}$ и $V=\bigcup\limits_{n=1}^\infty \{v^n\}$. Тогда Выберем в каждом кубе I^n две точки u^n и v^n , лежащие на противополож-U и V — два таких замкнутых дизъюнктных множества, что любая перегородка C между ними имеет размерность ind $C \geqslant \omega_0$. Возьмем счетное число экземпляров Z_p , $p=1,\,2,\ldots$, пространства Z. Множество в Z_p , соответствующее множеству $A \subseteq Z$, мы будем обозначать через A_p . В множе- $\bigcup Z_p$, взятом в топологии дискретного объединения пространств Z_p , $p = 1, 2, \ldots$, произведем следующие отождествления: точку v_p^n склеим с точкой u_{p+1}^n для каждых натуральных n и p. Мы получим пространство $\widetilde{X} = \bigcup_{p=1}^{\infty} Z_p$, причем $Z_p \cap Z_{p+1} = V_p = U_{p+1}$. Положим $X = \widetilde{X} \cup \{\delta\}$, где в точке δ топологию задаем базисом $G_{k+1} = X \setminus \bigcup_{p=1}^k Z_p$, $k = 1, 2, \ldots$, а в точках \widetilde{X} топология остается прежней. Поскольку $\operatorname{Fr} G_{h+1} = V_h$ и множество V_k счетно, имеем $\operatorname{ind}_{\delta} X \leq 1$.

Пространство X, очевидно, полно, метризуемо, имеет счетиую базу и $\operatorname{ind} X \leq \omega_0$. Докажем, что оно не содержится пи в каком компакте размерности $\leq \omega_0$.

Доказательство. Допустим противное, тогда существует компакт $Y \supset X$ и ind $Y \leqslant \omega_{\scriptscriptstyle 0}$. Отсюда и из теоремы суммы для конечномерных замкнутых множеств следует, что Ind $Y \leq \omega_0$. Рассмотрим окрестность O_{δ} в Y точки δ такую, что $O_\delta \cap U_i = \phi$. Тогда из условия Ind $Y \leqslant \omega_0$ следует, что существуют окрестности $W_i, i=1, 2, \ldots$, точки δ такие, что для всех i $\overline{W}_i \subset O_{\mathfrak{d}}, \quad \overline{W}_i \subset W_{i+1}, \quad \text{ind Fr } \overline{W}_i < \omega_0.$

Поскольку множества G_k , $k=2,\ 3,\ 4,\ldots$, образуют базис в точке δ , найдется такое патуральное m, что $\overline{G}_m \subset W_{\mathfrak{s}}$. Следовательно, множества $U_{\mathfrak{s}}$

при $k \ge m+1$ содержатся в W_i .

Докажем, что $U_m \setminus \overline{W}_2$ состоит лишь из конечного числа точек. Действительно, если $u_m^{h_1}, u_m^{h_2}, \ldots$ бесконечная последовательность точек, не принадлежащая \overline{W}_2 , то, поскольку $u_{m+1}^{k_1}, u_{m+1}^{k_2} \ldots \subset U_{m+1} \subset \overline{W}_2$, множество $\operatorname{Fr}\overline{W}_2$ отделяет носледовательность $u_m^{-h_1},\ u_m^{-h_2},\dots$ от носледовательности $u_{m+1}^{k_1},\ u_{m+1}^{k_2},\ldots$ Следовательно, Fr \overline{W}_2 отделяет точки $u_m{}^k{}_i$ и $u_{m+1}^{k_1}$ **х** ind $\operatorname{Fr} \overline{W}_2 \geqslant k_i - 1$, $i = 1, 2, \ldots$, a tak hak $\lim k_i = \infty$, to ind $\operatorname{Fr} W_2 \geqslant \omega_0$, что противоречит нашему предположению.

Совершенно аналогично тому, как для случая l=m, докажем по индукции, что множество $U_l \setminus \overline{W}_{m+2-l}, \ l=1,2,\ldots,m$, состоит лишь из конечного числа точек. Отсюда, полагая l=1, получаем, что множество

 $U_1 \setminus \overline{W}_{m+1}$ конечно, но это противоречит тому, что $\overline{W}_{m+1} \subset O_\delta \subset X \setminus U_1$. Предположение о существовании компакта $Y \supset X$ с условием ind $Y \leqslant \leqslant \omega_0$ привело нас к противоречию.

2. \ddot{O} пределение. Топологическое свойство P называется универ-

сальным, если оно удовлетворяет следующим условиям:

1) в любом пространстве X веса т и мощности 2^{τ} существует система подмножеств $A = \{A_{\gamma}: \gamma \in \Gamma\}$ мощности 2^{τ} такая, что любое подмножество $B \subset X$, обладающее свойством P, содержится в множестве A_{γ} , обладающем свойством P; если же B не обладает свойством P, то существует элемент системы A, содержащий B и не обладающий свойством P;

2) если $\dim Y = 0$, то X обладает свойством P тогда и только тогда, когда $X \times Y$ обладает этим свойством;

3) если $X \subseteq Y \subseteq Z$ и X и Z обладают свойством P, то и Y обладает этим свойством.

Лемма 6. Следующие свойства являются универсальными:

- 1) dim X = n;
- 2) ind $X = \alpha$;
- 3) X не является счетномерным;
- 4) X S-сильно бесконечномерно;
- 5) $T(X) = \beta$;

здесь α , β — порядковые числа, $n=0, 1, 2, \ldots, a$ T(X) — инвариант, введенный в работе (14).

 ${
m Teopema}$ 5. Допустим, что P- универсальное свойство и X- про-

странство веса τ и мощности 2^{τ} .

Тогда, если класс пространств веса $\leq \tau$, обладающих свойством P, не пуст, то существует пространство Z веса $\leq \tau$ со свойством P, уплотняющееся на X.

Следствпе 6. Пусть порядковые числа α из свойства 2) леммы 6 и β из свойства 5) той же леммы удовлетворяют неравенствам

 $|\alpha| \leq \aleph_0$, $|\beta| \leq \tau$.

Тогда для пространства X веса τ и мощности 2^{τ} и для любого из свойств 1)-5) леммы 6 существует пространство Y с этим же свойством, уплотняющееся на X, причем вес $Y\leqslant \tau$.

Для случая, когда $\tau = \Re_0$ и P есть свойство $\dim X = n$, утверждение

следствия 6 было доказано Хилгерсом (9).

3. Теорема 6. Для любой тройки (α, τ, n) , где α — порядковое число $\geqslant n$, τ — мощность $\geqslant \mathfrak{c}$, а n — натуральное число $u \mid \alpha \mid \leqslant \tau$, существуют бикомпакты $E^i_{\alpha n \tau}$, i=1, 2, веса $\leqslant \tau$ такие, что $\dim E^i_{\alpha n \tau} = n$, $\dim E^1_{\alpha n \tau} = 1$ = Ind $E^2_{\alpha n \tau} = \alpha$.

В случае, когда α есть натуральное число, утверждение теоремы 6 до-

казано Вопенкой (10).

Следствие 7. Универсальный бикомпакт $X_{n\tau}$ для пространств X данного веса τ и размерности $\dim X \leq n$ не имеет никакой трансфинитной размерности ind или Ind.

По поводу бикомпактов $X_{n\tau}$ см. (11, 12).

В заключение автор выражает благодарность Б. А. Пасынкову за советы и интерес к работе.

Московский государственный педагогический институт им. В. И. Ленина

Поступило 3 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. Hurewicz. Proc. Acad. Amsterdam, Ser. A, 30, № 3 (1927). ² M. Katětov, Czechoslov. Math. J. 2, 333 (1952). ³ Е. Г. Скляренко, Изв. АН СССР, сер. матем., 23, 197 (1959). ⁴ Ю. М. Смирнов. Изв. АН СССР, сер. матем., 20, 679 (1956). ⁵ Р. Роу, Виll. Ат. Маth. Soc., 68, 609 (1962). ⁶ Б. А. Пасынков, ДАН, 201, № 5 (1971). ¬ Б. А. Пасынков, Тр. Московск. матем. общ., 13, 136 (1965). в L. А. Тишагкіп, Маth. Алп., 98, 637 (1928). в А. Ні1gers, Fund. Маth., 28, 303 (1937). р Р. Vорёпка, Сzechoslov. Маth. J., 8, 319 (1958). в А. В арелуа. ДАН, 154, № 5 (1964). в Б. А. Пасынков, ДАН, 154, № 5 (1964). в Смирнов, Матем. сборн., 58, № 4 (1962). в ДАН, 154, № 5 (1964). в Касембург, ДАН, 199, № 6 (1971).