УЛК 539.30

ТЕОРИЯ УПРУГОСТИ

В. И. МАЛЫЙ, А. Б. ЕФИМОВ, В. Н. ВОРОБЬЕВ

О РЕШЕНИИ ПРОСТРАНСТВЕННЫХ КОНТАКТНЫХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ

(Представлено академиком А. А. Дородницыным 8 VI 1971)

Задачи о контакте упругих тел образуют своеобразный класс смешанных граничных задач теории упругости, для которых линия раздела граничных условий заранее неизвестна (1-4). Вопрос об определении области соприкосновения деформируемых тел в этих задачах, как правило, не ставился. Исключением являются плоская симметрическая и осесимметрическая задачи, в которых затруднения не возникают (2, 4). Но уже в случае взаимодействия гладкого штамна с упругой полуплоскостью по нескольким областям контакта (4), когда аналитическое решение общей смешанной задачи известно, определение граничных точек сводится к системе трансцендентных уравнений, которые получаются из условия ограниченности контактного давления. Число областей контакта нужно подбирать из условия неотрицательности давления и требования, чтобы поверхности штампа и упругого тела не пересекались. Трудности существенно возрастают в общем случае, когда аналитического решения нет, а пензвестная граница является пространственной кривой.

Ниже показано, что решения задач для илоских штампов играют фундаментальную роль — их суперпозиция дает решение произвольной контактной задачи. Благодаря этому проблема контакта гладких упругих тел сводится к двум: решению смешанных задач о плоских штампах и определению изменения области контакта в процессе нагружения. Для решения второй проблемы сформулирована система соотношений и предложен численный метод.

1. Пусть α — вектор перемещения одного из контактирующих тел по отношению ко второму, $\mathbf{n}(\mathbf{r})$ — внешняя для первого из тел нормаль в точке \mathbf{r} поверхности, $f_n(\mathbf{r})$ — зазор между телами в ненагруженном состоянии, $K_n(\mathbf{r}, \mathbf{r}')$ — увеличение этого зазора в точке \mathbf{r} , когда в точке \mathbf{r}' на оба тела действуют единичные сосредоточенные силы пормального давления. Определим расстояние $f(\mathbf{r})$ между ненагруженными телами по направлению α и его увеличение $K(\mathbf{r}, \mathbf{r}')$ под действием сосредоточенных сил давления:

$$f(\mathbf{r}) = \frac{f_n(\mathbf{r})}{\operatorname{an}(\mathbf{r})}, \quad K(\mathbf{r}, \mathbf{r}') = \frac{K_n(\mathbf{r}, \mathbf{r}')}{\operatorname{an}(\mathbf{r})}, \quad \mathbf{a} = \frac{\alpha}{\alpha}, \quad \alpha = |\alpha|.$$

Обозначим через $p(\mathbf{r},\alpha), S_\alpha$ и Γ_α контактное давление, область контакта и ее контур при сближении тел α соответственно. Тогда увеличение расстояния между телами $w(\mathbf{r},\alpha)$ под действием контактного давления и условия контакта примут вид

$$w(\mathbf{r}, \alpha) = \int K(\mathbf{r}, \mathbf{r}') p(\mathbf{r}', \alpha) dS', \qquad (1)$$

$$w(\mathbf{r}, \alpha) = \alpha - f(\mathbf{r}), \ p(\mathbf{r}, \alpha) \geqslant 0, \ \mathbf{r} \in S_{\alpha};$$

$$w(\mathbf{r}, \alpha) > \alpha - f(\mathbf{r}), \quad p(\mathbf{r}, \alpha) = 0, \quad \mathbf{r} \notin S_{\alpha}.$$
 (2)

Дифференцируя (1) и (2) по а, получаем соответственно

$$\frac{\partial}{\partial a} w(\mathbf{r}, \alpha) = \int K(\mathbf{r}, \mathbf{r}') \frac{\partial}{\partial a} p(\mathbf{r}', \alpha) dS', \tag{3}$$

$$\frac{\partial}{\partial a} w(\mathbf{r}, \alpha) = 1, \ \mathbf{r} \in S_{\alpha}; \quad \frac{\partial}{\partial a} p(\mathbf{r}, \alpha) = 0, \ \mathbf{r} \notin S_{\alpha}.$$
 (4)

Система (3), (4) совпадает с системой уравнений смешанной задачи о плоском штамие с основанием S_{α} . Решения $w_0(\mathbf{r}, \Gamma_{\alpha})$ и $p_0(\mathbf{r}, \Gamma_{\alpha})$ задачи о плоском штамие с основанием S_{α} являются функционалами контура Γ_{α} . Из равенств $\frac{\partial}{\partial \alpha} w(\mathbf{r}, \alpha) = w_0(\mathbf{r}, \Gamma_{\alpha})$ и $\frac{\partial}{\partial \alpha} p(\mathbf{r}, \alpha) = p_0(\mathbf{r}, \Gamma_{\alpha})$ следует представление решения контактиой задачи (1), (2) в виде *

$$w(\mathbf{r}, \alpha) = \int_{0}^{\alpha} w_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau, \quad p(\mathbf{r}, \alpha) = \int_{0}^{\alpha} p_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau.$$
 (5)

Из (5) и (2) получаем систему условий для определения Γ_{τ} :

$$\int_{0}^{\alpha} w_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau = \alpha - f(\mathbf{r}), \quad \int_{0}^{\alpha} p_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau \geqslant 0, \quad \mathbf{r} \in S_{\alpha},$$

$$\int_{0}^{\alpha} w_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau > \alpha - f(\mathbf{r}), \quad \int_{0}^{\alpha} p_{0}(\mathbf{r}, \Gamma_{\tau}) d\tau = 0, \quad \mathbf{r} \notin S_{\alpha}.$$
(6)

Сформулированные соотношения позволяют обнаружить некоторые общие свойства решений контактных задач. Если $p_0(\mathbf{r}, \, \Gamma_\tau) > 0$, $\mathbf{r} \in S_\tau$, то внешность S_α является внешностью для всех S_τ , $0 \le \tau \le \alpha$; в противном случае нарушается последнее из условий (6). Поэтому S_α не убывает по α , а $p(\mathbf{r}, \, \alpha)$, $\mathbf{r} \in S_\alpha$,— монотонно возрастающая функция α . S_α может изменяться немонотонно по α в случае неположительности $p_0(\mathbf{r}, \, \Gamma_\tau)$, что имеет место для тел с тонким упругим покрытием (6).

2. Пусть выполняется условие

$$p_0(\mathbf{r}, \Gamma_{\tau}) > 0, \quad \mathbf{r} \in S_{\tau}.$$
 (7)

Тогда S_{α} растет монотонно и определяется соотношениями

$$\int_{0}^{\alpha} g(\mathbf{r}, \Gamma_{\tau}) d\tau = f(\mathbf{r}), \mathbf{r} \in S_{\alpha}, \int_{0}^{\alpha} g(\mathbf{r}, \Gamma_{\tau}) d\tau < f(\mathbf{r}), \mathbf{r} \notin S_{\alpha},$$

$$g(\mathbf{r}, \Gamma_{\tau}) = 1 - w_{0}(\mathbf{r}, \Gamma_{\tau}),$$

а другие два из соотношений (6) выполняются автоматически. Приближенное решение Γ_{τ}^* построим, удовлетворяя соотношениям

$$\left| f(\mathbf{r}) - \int_{0}^{\alpha} g(\mathbf{r}, \Gamma_{\tau}^{*}) d\tau \right| < \delta, \ \mathbf{r} \in S_{\alpha}^{*}, \quad \int_{0}^{\alpha} g(\mathbf{r}, \Gamma_{\tau}^{*}) d\tau < f(\mathbf{r}), \ \mathbf{r} \notin S_{\alpha}^{*}. \quad (8)$$

Это можно сделать, если искать решение Γ_{τ}^* в классе кусочно-постоянных. Например, в задачах о контакте гладких упругих тел удобно использовать следующий вариант метода коллокаций. Пусть контуры $\Gamma_0, \ldots, \Gamma_n$ уже определены так, что

$$\sum_{i=0}^{n-1} g(\mathbf{r}, \Gamma_i) (\alpha_{i+1} - \alpha_i) = f(\mathbf{r}), \ \mathbf{r} \stackrel{\circ}{=} \bigcup_{i=1}^n \Gamma_i; \sum_{i=0}^{n-1} g(\mathbf{r}, \Gamma_i) (\alpha_{i+1} - \alpha_i) < f(\mathbf{r}), \mathbf{r} \notin S_n.$$
(9)

Тогда Γ_{n+1} определим как геометрическое место корней уравнения

$$\sum_{i=0}^{n} g(\mathbf{r}, \Gamma_i) (\alpha_{i+1} - \alpha_i) = f(\mathbf{r}), \quad \mathbf{r} \notin S_{n+1}, \tag{10}$$

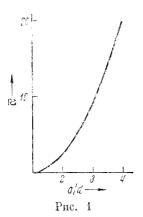
^{*} Подобное представление решения осесимметрической контактной задачи для полупространства использовалось В. И. Моссаковским (5).

а внешность области S_{n+1} определим неравенством

$$\sum_{i=0}^{n} g(\mathbf{r}, \Gamma_i) (\alpha_{i+1} - \alpha_i) < f(\mathbf{r}), \quad \mathbf{r} \notin S_{n+1}.$$
(11)

Можно показать, что области S_n монотонно растут, а δ в (8) имеет порядок шага по α .

Определив S_{τ}^* , получим решение задачи (1), (2) по формулам (5). Существенно, что каждая точка контура Γ_n находится независимо от осталь-



ных как корень уравнения (10). Это в вычислительном отношении принципиально проще подбора области, для которой решение уравнения (1) удовлетворяло бы условиям контакта (2).

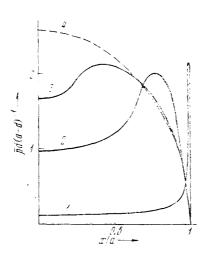
3. Рассмотрим новый класс контактных задач о вдавливании в упругое полупространство (модуль сдвига G, коэффициент Пуассона v) выпуклого итампа формы

$$f(\mathbf{r}) = f(\eta), \quad 2\eta^2 = d^2 + r^2 + ((d^2 + r^2)^2 - 4d^2x^2)^{\frac{1}{2}},$$
 (12)

сечения которого являются софокусными эллип-

$$\frac{x^2}{\eta^2} + \frac{y^2}{\eta^2 - d^2} = 1, \quad d \leq \eta < \infty,$$
 (13)

где η — большая полуось проходящего через точку ${\bf r}$ эллинса из семейства (13). Этот класс охватывает контактные задачи от осесимметричных (d=0) до пространственных с сильно вытянутой областью контакта (7 , 8). Выберем в качестве контура Γ_{0} эллинс из семейства (13) с большой полуосью a_{0} . Решение задачи о таком плоском штамие известно (3). Подставляя его в (10), убеждаемся, что Γ_{1} и все последующие Γ_{n} принадлежат семей-



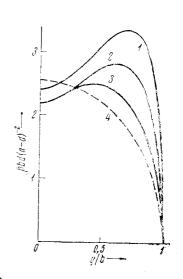


Рис. 2

ству (13). Если уже определены a_1, \ldots, a_{n-1} , большая полуось a_n контура Γ_n определяется как корень трансцендентного уравнения, имеющего единственный ненулевой корень. При этом погрешность δ в (8) будет меньше $\max_i |\alpha_{i+1} - \alpha_i|$.

Была решена задача о контакте с упругим полупространством штампа формы $f(\mathbf{r}) = A (\eta - d)^2$, который при $r \sim d$ существенно отличается от

осесимметричного, а при $r \gg d$ асимптотически приближается к нараболическому $f(\mathbf{r}) = Ar^2$. Расчеты производились на БЭСМ-6.

Зависимость внедрения $a = Ad^2\bar{a}$ (a/d) от большой полуоси a границы области контакта представлена на рис. 1 для интервала a < 4d. При a = 4d область контакта практически становится кругом $(a = 1,035\ b,\ b-$ малая полуось границы области контакта). Как оказалось, функцию \bar{a} можно аппрексимировать выражением

$$\overline{a}\left(\frac{a}{d}\right) = \left(\frac{a}{d} - 1\right)^2 \left(2 + \ln \frac{a - 0.15d}{a - d}\right)$$
,

погрешность которого на интервале $d \le a \le 4d$ не превышает 1% от максимального значения. (Для сравнения напомним, что для парэболического штампа $f(\mathbf{r}) = Ar^2$ имеет место зависимость $\alpha = 2Aa^2$.)

На рис. 2, a, 6 представлены распределения давления $p(\mathbf{r}) = G(1-\mathbf{v})^{-1}Ad\bar{p}(\mathbf{r})$ вдоль большой (x) и малой (y) полуосей области контакта. Кривые 1, 2, 3 построены для значений a=1,005 d; 1,5 d и 4 d соответственно. Здесь же для сравнения приведены кривые 4, описывающие распределение давления $(8/\pi)\left[1-(r/a)^2\right]^{v_a}$ в осесимметричной задаче Герца и являющиеся предельными кривыми нашей задачи для $a \gg d$. Как и следовало ожидать в случае $a-d\ll d$, кривая I (рис. 2a) для x < a мало отличается от распределения давления под плоским штампом $a/(x^2-x^2)^{v_a}$. Лишь при x=0.95 a отличие между ними достигает 5%. При $a-d\ll d$ область контакта сильно вытянута $(b\ll d)$. Для $y\ll d$ форма рассматриваемого здесь штампа в поперечном сечении плоскостью x=0 описывается уравнением $f(\mathbf{r})=0.25$ $Ad^{-2}y^4$. Поэтому было интересно сравнить кривую I (рис. 2 6) с решением плоской задачи для штампа, задаваемого параболой 4 степени. Как оказалось, он совналает по форме с точностью ло 1%.

Всесоюзный паучно-исследовательский институт физико-технических и радиотехнических измерений

Поступило 28 V 1971

Вычислительный центр Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. Ляв, Математическая теория упругости, М., 1935. ² Л. А. Гаяни, Контактные задачи теории упругости, М., 1953. ³ А. И. Лурье, Теория упругости, М., 1970. ⁴ И. Я. Штаерман, Контактная задача теории упругости, М., 1949. ⁵ В. И. Моссаковский, ПММ, 27, в. 3, 418 (1963). ⁶ А. Б. Ефимов, В. И. Малый, Н. М. Толкачева, Изв. АН СССР, Мех. тверд. тела, № 1, 166 (1969). ⁷ А. Н. Грубин, Сборн. научн. тр. Куйбышевск. индустриалын. инст., в. 4 (1953). ⁸ И. Я. Штаермаи, Сборн. Проблемы механики сплошной среды, М., 1961.