ФИЗИКА УДК 539.01

Б. А. МЕНЬ, А. Н. МЕНЬ, В. И. ЧЕРЕПАНОВ

ИСПОЛЬЗОВАНИЕ ОПЕРАЦИИ ПЛЕТИЗМА ДЛЯ КЛАССИФИКАЦИИ РАЗРЕШЕННЫХ ТЕРМОВ ПРИМЕСНЫХ КОМПЛЕКСОВ В КРИСТАЛЛЕ

(Представлено академиком С. В. Вонсовским 25 V 1972)

Расчет энергетического спектра комплекса примесных парамагнитных ионов в кристалле существенно облегчается, если провести заранее теоретико-групповую классификацию разрешенных термов. Решение этой задачи встречается с большими техническими трудностями для многоэлектронных многоядерных комплексов (1, 2). В настоящей работе предлагается использовать для этой цели операцию илетизма представлений групп (3).

Пусть имеется группа G, неприводимые представления которой обозначим Γ_i . Возьмем некоторый набор, содержащий m штук $\Gamma(\Gamma_{i_1}, \ldots, \Gamma_{i_m})$, среди которых могут быть и повторяющиеся. Рассмотрим группу $M \equiv G \times G \times \ldots \times G \wedge S_m$ (знак λ означает полупрямое произведение

группы $G_0 = G \times G \times \ldots \times G$ на группу перестановок S_m) со следующим закопом умножения:

$$\left\{g_{1}g_{2}\ldots g_{m} \left[\underbrace{1 \ 2 \ m}_{P_{i} \in S_{m}} \left\{ h_{1}h_{2}\ldots h_{m} \mid P_{j} \right\} \right] = \left\{g_{1}h_{i_{1}i_{m}}\ldots g_{m}h_{i_{m}} \mid P_{i}P_{j} \right\}. (1)$$

Зафиксируем неприводимое представление $[\lambda]$ группы S_m . Теперь с помощью набора $(\Gamma_{i_1}\dots\Gamma_{i_m})$ и $[\lambda]$ можно построить представление D групны M, характер $\chi^{(D)}$ которого на произвольном элементе $t=\{g_1\dots g_m\,|\, P_i\}$ вычисляется следующим образом:

1) записываем перестановку P_i в виде произведения циклов

$$P_i = (\alpha_1 \alpha_2 \dots \alpha_{r_1}) (\beta_1 \beta_2 \dots \beta_{r_2}) \dots;$$

2) расставляем $\Gamma_{i_1} \dots \Gamma_{i_m}$ произвольным образом на m местах, так чтобы если $(\alpha_1 \ldots \alpha_{r_1})$ — цикл в P_i , то на местах $\alpha_1 \ldots \alpha_{r_1}$ стоит одно и то же Γ_{α} ;

3) для каждой такой расстановки вычисляем

$$\chi_0 = \chi^{(\Gamma_{\alpha})} (g_{\alpha_1} \dots g_{\alpha_{r_1}}) \chi^{(\Gamma_{\beta})} (g_{\beta_1} \dots g_{\beta_{r_2}}) \dots;$$

4) составляем сумму χ_0 по всем таким расстановкам; 5) умножаем ее на $\chi^{[\lambda]}$ (P_i).

Представление D назовем илетизмом набора $(\Gamma_{i_1}\dots\Gamma_{i_m})$ с $[\lambda]$

 $(D = (\Gamma_{i_t} \dots \Gamma_{i_m}) \boxtimes [\lambda]).$ Если $G = S_n - \text{симметрическая группа, то группу } M \equiv S_n \times \dots \times S_n \lambda S_m$ можно представить себе состоящей из таких перестановок группы S_{nm} , которые переводят символы одного прямого сомножителя целиком в другой в зависимости от $P_i \in S_m$. При таком подходе группа M будет подгруппой S_{nm} . Выбираем набор ($[\lambda_{i_1}], [\lambda_{i_2}], \ldots, [\lambda_{i_m}]$) неприводимых представлений групны S_n и $[\lambda]$ -группы S_m . Составляем плетизм $D = ([\lambda_{i_1}] \dots [\lambda_{i_m}]) \boxtimes [\lambda];$ D — представление группы M. Находим индуцированное представление $D^{({
m S}_{nm})}$ с группы M на группу ${S}_{nm}.$ Представление $D^{({
m S}_{nm})}$ будем называть илетизмом Π схем Юнга в случае, когда $G = S_n$ — симметрическая группа. Покажем, как вычислять плетизм схем Юнга

$$\Pi = ([\lambda_{i_1}], [\lambda_{i_2}], \dots, [\lambda_{i_m}]) \boxtimes [\lambda]. \tag{2}$$

1) Если $[\lambda_{i_t}] = [\lambda_{i_t}] = \ldots = [\lambda_{i_m}] \equiv [\lambda_i]$, то

$$\Pi = [\lambda_i] \otimes [\lambda], \tag{3}$$

где ⊗ означает обыкновенный плетизм, правила вычисления которого изложены в (³).

2) Пусть в наборе $[\lambda_i]$ имеется $n_1 - [\lambda_{i_1}], n_2 - [\lambda_{i_2}]$ и т. д. Разлагаем $[\lambda]$ на группе $S_{n_1} \times S_{n_2} \times \dots$ по правилу Литлвуда (4):

$$[\lambda] = \sum_{[\lambda_1], [\lambda_2]...} a_{\lambda_1 \lambda_2} \dots [\lambda_1] \cdot [\lambda_2] \dots \tag{4}$$

Теперь

$$\Pi = \sum_{\{\lambda_1\},\{\lambda_2\},\dots} a_{\lambda_1\lambda_2}\dots[\lambda_{i_1}] \otimes [\lambda_1] \cdot [\lambda_{i_2}] \otimes [\lambda_2]\dots$$
 (5)

При вычислении (5) сначала выполняем плетизм ⊗, а потом внешнее тензорное произведение ..

Применим вышеизложенное к конкретным физическим задачам. Изложим процедуру нахождения разрешенных термов примесных комплексов в случае одинаковых спинов или одинаковых орбит. Для дальнейшего существенно, что группа симметрии комплекса G_k содержится в группе $M \equiv G \times G \times \ldots \times G \ \lambda \ S_N$, если G — группа локальной точечной симметрии атома. Пусть имеем N примесных одинаковых атомов, каждый из которых содержит n электронов. І-й атом находится в состоянии $\Gamma_i[\lambda_i]$. Ограничимся случаем, когда либо все Γ_i , либо все $[\lambda_i]$ совпадают. Для нахождения разрешенных термов поступаем следующим образом:

1) Выбираем произвольную схему Юнга $[\lambda]$ группы S_N .

- 2) Строим плетизм $D = (\Gamma_1 \Gamma_2 \dots \Gamma_N) \boxtimes [\lambda]$. Это представление группы M. Как мы подчеркнули выше, группа точечной симметрии комплекса G_k содержится в M. Разлагая D на группе G_h , получаем орбитальные состояния комплекса.
- 3) Строим плетизм $\Pi = ([\tilde{\lambda}_1], [\tilde{\lambda}_2] \dots [\tilde{\lambda}_N]) \boxtimes [\lambda],$ ограничиваясь только физическими схемами (содержащими не более двух столбцов).
- 4) Приписываем получившиеся в п. 3) спины орбитальным состояниям в п. 2).
 - 5) Перебирая [λ] получаем все возможные разрешенные термы.

Пример 1. Пара $\mathrm{Mn^{3+}}:\mathrm{Al_2O_3}.$ Оба иона $\mathrm{Mn^{3+}}$ находятся в состоянии ${}^5E,~G=C_3,~G_k\equiv D_3,~M=C_3\times C_3 \lambda S_2,~\mathrm{B}~D_3$ входят элементы $\overline{E}\{\mathrm{ee}\,|\,\mathrm{e}\},~\overline{C}_3\{C_3C_3^{-1}|\,\mathrm{e}\},~C_3^{-1}\{C_3^{-1}C_3|\,\mathrm{e}\},~\overline{U}_2\{\mathrm{ee}\,|\,(12)\},~\overline{U}_2\{C_3C_3^{-1}|\,(12)\},~\overline{U}_2\{C_3^{-1}C_3|\,(12)\}.$

1) $[\lambda];$ 2) $D = (EE) \boxtimes [\lambda];$

$$\chi^{(D)}(\overline{E}) = \chi^{(E)}(e)\chi^{(E)}(e)\chi^{[\lambda]}(e),$$

$$\chi^{(D)}(\overline{U}_{2}) = \chi^{(E)}(e^{2})\chi^{[\lambda]}(12),$$

$$\chi^{(D)}(\overline{C}_{3}) = \chi^{(E)}(C_{3})\chi^{(E)}(C_{3}^{-1})\chi^{[\lambda]}(e).$$

$$\frac{\chi^{(D)}(\overline{E})|\chi^{(D)}(\overline{C}_{3})|\chi^{(D)}(\overline{U}_{2})}{4} \qquad 1 \qquad 2$$

$$4 \qquad 1 \qquad -2$$

$$2A_{1} + E \leftrightarrow [\lambda] = [2],$$

$$2A_{2} + E \leftrightarrow [\lambda] = [1^{2}];$$

3) ([1⁴], [1⁴])
$$\boxtimes$$
 [2] = [1⁴] \otimes [2] = [1⁸] + [2²1⁴] + [2⁴], ([1⁴], [1⁴]) \boxtimes [1²] = [1⁴] \otimes [1²] = [21⁶] + [2³1²]; 4) $2A_1 + E \leftrightarrow [1^8]$, [21⁶], [2⁴], спин \longrightarrow 4 2 0; $2A_2 + E \leftrightarrow [21^6]$, [2³1²], спин \longrightarrow 3 1;

5) 2^9A_1 , 2^5A_1 , 2^1A_1 , 2^2A_2 , 1E , 3E , 5E , 7E , 9E . Пример 2. Пара Cr³+ в Al₂O₃. Один ион в состоянии 4E , другой - 2E , $G = \hat{C}_3$, $G_b = D_3$, Аналогично первому примеру пля орбитальных состояний имеем

- 1) $[\lambda] = [2] \leftrightarrow 2A_1 + E;$ 2) $[\lambda] = [1^2] \leftrightarrow 2A^2 + E;$
- 3) $([3], [2, 1]) \boxtimes [2] = /[2] = [1][1]/$ $[13] \otimes [1] \cdot [21] \otimes [1] = [1^3][21] = [21^4] + [2^21^2]$ $/[4^2] = [4][4]/$

 $([\widetilde{3}], [2, 1]) \boxtimes [1^2] = [21^4] + [2^21^2];$ 4) $2A_1 + E \leftrightarrow [21^4], [2^21^2],$ [214] [2212] спин

 $2A_2 + E \leftrightarrow [21^4], [2^21^2];$ 5) $2^{5}A_{1}$, $2^{3}A_{1}$, $2^{5}A_{2}$, $2^{3}A_{2}$, $2^{5}E$, $2^{3}E$.

Таблипа 1

Пара (N = 2) (группы C ₂)	Триада (N = 3) (группы D ₃)	Тетраэдр $(N=4)$ (группы T_d)
1, 5, 9, 13 _A	4, 6, 8, 10, 12, 16,4,	$1, 5, 9, 11, 13, 17$ (2) (2) A_1
3, 7, 11, 15 _B	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29 (3) (3) (2) (3) (2) (3) (2) A_2 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25 (3) (4) (2) (5) (2) (2) (2)
	(2) (3) (2) (2) (2) E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 Π ример 3. Каждый из N атомов, N=2,3,4, содержащий 7 электронов, находятся в *s*-состоянии с мультиплетностью 8. Разрешенные термы приведены в табл. 1 (использованы следующие обозначения: ${}^{14}_{(2)}{}^{16}E$ означает состояния 214Е, 18Е и т. п.).

Институт металлургии Уральского научного центра Академии наук СССР Поступило 45 V 1972

Уральский государственный университет им. С. М. Кирова Свердловск

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Черепанов, А. А. Щетков, ЖЭТФ, 55, 1805 (1968). ² Н. Г. Каплан, О. Б. Родимова, ЖЭТФ, 55, 1881 (1968). ³ В. Ванагас, Алгебраические методы в теории ядра, Вильнюс, 1971. ⁴ И. Г. Каплан, Симметрия многоэлект ронных систем, «Наука», 1969.