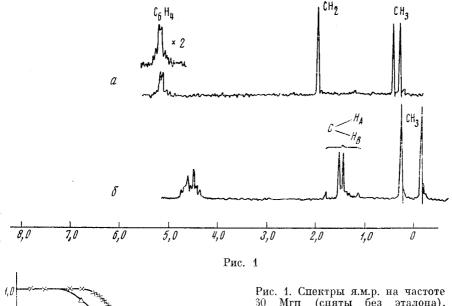
УДК 547.665 ХИМИЯ

Член-корреспондент АН СССР Н. С. НАМЕТКИН, В. М. ВДОВИН, Е. Б. ПОРТНЫХ, Е. Ш. ФИНКЕЛЬШТЕЙН, В. А. ПОЛЕТАЕВ, А. Ю. КОШЕВНИК

СИНТЕЗ И НЕКОТОРЫЕ СВОЙСТВА ХРОМТРИКАРБОНИЛЬНЫХ π -КОМПЛЕКСОВ ПРОИЗВОДНЫХ ИНДАНА


В последнее время большое впимание уделяется изучению свойств л-комплексов карбонилов переходных металлов VI—VIII групп, в частности хромтрикарбонильных л-комплексов ароматических соединений (1).

В настоящей работе мы сообщаем о синтезе и некоторых свойствах хромтрикарбонильных л-комплексов индана (I), 1,1-диметилиндана (II), 2,2-диметилиндана (III) и 2,2-диметил-2-силанндана (IV). Синтез был осуществлен по схеме:

Условия некоторых типичных опытов, физические свойства полученных л-комплексов и их анализы сведены в табл. 1. Строение л-комплексов было подтверждено и.-к. и я.м.р. спектрами (табл. 2). На рис. 1 в качестве примеров приведены спектры 2,2-диметил-2-спланидана и трикарбонил-(2,2-диметил-2-спланидан)-хрома. Во всех случаях соотношения интенсивностей сигналов согласуются с рассчитанными соотношениями количеств протонов в молекулах.

Сопоставление спектров я.м.р. исходных соединений и их комплексов свидетельствует о влиянии комплексно-связанной группировки ${
m Cr}({
m CO})_3$ на распределение электронной плотности не только в бензольном кольце, но и в метиленовых и метильных группах лиганда. Как следует из приведенных в табл. 2 данных для растворов в CCl₄ (для растворов в CHCl₃ получены близкие значения), сигналы протонов бензольного кольца комилексов усложнены по сравнению с такими же сигналами исходных соединений и сдвинуты в среднем па ~1,8 м.д. в сторону сильного поля. Влияние Cr(CO) 2-группы на химические сдвиги метиленовых протонов гораздо меньше, чем для ароматических протонов. При этом сигналы от с-метиленовых протопов почти не сдвигаются или сдвигаются в сторону сидьного поля, а сигналы от в-метиленовых протонов сдвигаются в сторону слабого поля. В то время как в спектре 1,1-диметилиндана сигналы метиленовых протонов образуют два триплета с константой спин-спиновой связи $J \approx 7$ гц (система A_2X_2), в спектре соответствующего π -комплекса при небольшом изменении химических сдвигов сигналы сильно усложнены.

Такое усложнение можно объяснить появлением неэквивалентности геминальных протонов в одной (ABX₂) или обеих (ABXY или ABCD) метиленовых группах. Эта неэквивалентность еще сильнее проявляется в спектрах растворов л-комплексов в бензоле. Что касается метильных групп комплексов II — IV, то они дают не один, а два сигнала одинаковой интенсивпости, что свидетельствует о перквивалентности геминальных

0,8 × 0,6 0,2 350 °C. 5// 100 150 250 300 400 Рис. 2

30 Мгц (сняты без эталона). Комплекс IV в CCl_4 (a), в C_6H_6 (б)

Термогравиметрические кривые комплексов III и IV. Формулы приведены в табл. 1

СН₃-групп. По сравнению со спектром исходного ароматического соединепия сигнал одной из метильных групп комплекса почти не сдвигается, а другой сдвигается в сторону слабого поля.

Влияние хромтрикарбонильной группы на характер спектров я.м.р. протонов лиганда еще сильнее сказывается для бензольных растворов комплексов III и IV, где сигнал метиленовых групп образует АВ-квартет. По этому квартету была установлена неэквивалентность геминальных метиленовых протонов (константы спин-спинового взаимодействия: $J_{\rm AB}=16.1\pm0.2$ гц для III и $J_{\rm AB}=17.0\pm0.2$ гц для IV). Метильные группы комплексов в растворе бензола, также как и в CCl₄, дают два одипочных сигнала, но еще более отстоящих друг от друга и сдвинутых дальше в сторопу сильного поля.

Описанные явления, очевидно, связаны со структурными особенностями индановых лигапдов, в которых геминальные группировки жестко зафиксированы относительно бициклического скелета. Сг(СО) з-группа, расположенцая, как известно, над плоскостью аренового лиганда (2), находится на разных расстояниях от метильных заместителей, оказывающихся относительно нее в цис- и транс-положениях. Это и приводит к появлению

неравноценности указанных заместителей внутри $\mathrm{C(CH_3)_2}$ отражающейся в разных величинах химических сдвигов метильных протонов в спектрах я.м.р. Подобное явление не наблюдается в хромтрикарбоиильном комплексе изопропилбензола, что вероятно, связано с возможностью свободного вращения относительно $C_{\rm Ar}-C_{\rm Alk}$ -связи в этом соединении, в результате чего оба метильных заместителя остаются спектрально неразличимыми. Приведенные рассуждения остаются в силе и для α-СН₂-группировок комплексов I-IV.

Таблица 1 Синтез и свойства хромтрикарбонильных л-комплексов производных индана (все опыты проводились при мольном соотношении ароматического соединения и гексакарбонила хрома, равном 4,5:1, продолжительность опытов 8 час., температура 140° С, растворитель ди-н-бутиловый эфир, взятый в количестве 10 молей на 1 моль гексакарбонила хрома)

Ароматические соединения	π-Комплексы	Выход, мол. %	Т. пл., °С	Цвет	Найдено, %			Вычислено, %			Мол. вес (криоскоп. в бензоле)	
					G	H	Cr	С	H	Cr	найдено	вычислено
	(CO) ₃ Cr—(1)	50	79*	Желтый	57,11	4,39	20,83	56,69	3,94	20,47	246	254
CH ₃ CH ₃	(II) (CO) ₃ Cr CH ₃ CH ₃	25	83 *	»	59,68	5,40	18,63	59,57	4,96	18,44	274	282
CH3	(CO) ₃ Cr CH ₃	29	148 **	»	59,87	4,97	18,89	59,57	4,96	1 8,44	276	282
CH_3 CH_3	(CO) ₃ Cr CH ₃ CH ₃	27	170 **	»	52,50	4,70		52,68	4,69	_	286	298

Примечание. v_{CO} для комплексов I—IV находятся в районе 1870 и 1945 см⁻¹.

^{*} Из генсана. ** Из этанола.

Спектры я.м.р. структурно-подобных производных индана и их хромтрикарбонильных π -комплексов

	Раствори- тель	Ароматические протоны			Метил	протоны	Метильные протоны			
Соедине- ние		δ, м.д.	характер сигнала *	разность хим, сдви- гов исходного соеди- непия в ССІ, и комп- лекса в данном рас- творителе	δ, м.д.	характер сигнала *	разность хим. сдви- гов исходного соеди- ния в ССІ4 и комп- лекса в данном рас- творителе	δ. м.д.	характер сигнала *	разность хим, сдви- гов исходного соеди- нения в ССІ, и комп- лекса в данном рас- творителе.
	[CC1₄	6,98	С		2,72	т]	1,12	c	
CH ₃ CH ₃					1,72	т				
$\langle O \rangle$	C ₆ H ₆		_	_	2,68	т		1,27	c	
\sim					1,68	т		1,21	٦	
Комплекс II	CCl4	5,18	м	1,80	2,77 1,92	M M	-0,05 $-0,20$	1,38 1,15	c c	-0,26 -0,03
	C ₆ H ₅	4,32	М	2,66	от 1,2 до 2,4	м	 **	1,08 0,67	c c	$0.04 \\ 0.45$
\bigcirc	CC1.	7,02	С	1	2,64	С		1,11	c	
Ch ³	C ₆ H ₆	_	l –	_	2,52	С		0,97	c	
Комплекс III	CCl₄ C₅H₅		раство- рим М	2,54	2,28 2,00	}AB-¤	0,36 0,64	1,10 0,68	c c	0,01 0,33
CH ₃	CC1.	7,03	м		2,00	c		0,22	С	
CH.	C ₆ H ₆	_	_		1,88	с		-0,02	С	
Комплекс IV	CCl ₁ C ₅ H ₅	5,18 4,52	M M	1,85 2,51	1,95 1,59 1,34	с АВ—к	0,05 0,29 0,54	0,42 0,28 0,25 -0,17	c c	-0,20 -0,06 -0,27 0,15

^{*} * С — синглет, т — триплет, AB — к — квадруплет спин-системы AB, м — мультиплет. ** Не определялось ввиду сложного характера мультиплета.

Следует отметить, что полученные нами результаты находятся в соответствии с данными о цис-, транс-изомерии хромтрикарбонильных π -комплексов негеминальных замещенных инданов ($^{3-6}$).

В настоящей работе определена термическая стабильность трикарбонил-(2,2-диметилиндан)-хрома и трикарбонил-(2,2-диметил-2-силаиндан)-хрома. На рис. 2 приведены термогравиметрические кривые, снятые для обоих л-комплексов в атмосфере аргона. Как видно из рис. 2, комплекс кремнийсодержащего производного индана оказался стабильнее комплекса его полного углеродного аналога на $\sim 25^{\circ}$. В обоих случаях продуктами распада являлись отщепившиеся ароматические лиганды — 2,2-диметилиндан и 2,2-диметил-2-силаиндан соответственно.

Спектры я.м.р. снимались на приборе «Вариан» Т-60 при 22°.

Институт нефтехимического синтеза им. А. В. Топчиева Поступило 15 VI 1972

Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Органические синтезы через карбонилы металлов, сборн. под ред. А. Н. Несмеянова, М., 1970. ² М. F. Bailey, L. F. Dahl, Inorg. Chem., 4, 1314 (1965). ³ W. R. Jackson, C. H. McMullen, J. Chem. Soc., 1965, 1170. ⁴ D. E. F. Gracey, W. R. Iackson et al., J. Chem. Soc. B, 1969, 1197. ⁵ D. E. F. Gracey, W. R. Jackson et al., J. Chem. Soc. B, 1969, 1204. ⁶ D. E. F. Gracey, W. R. Jackson et al., J. Chem. Soc. B, 1969, 1210.