УДК 513.831

7.

MATEMATHKA

П. Г. ПАРФЕНОВ

К ТЕОРИИ РАЗМЕРНОСТИ БИКОМПАКТОВ

(Представлено академиком П. С. Александровым 31 V 1972)

Понятие совершенной размерности бикомпактов введено в работе (1). В этой же работе показано, что из совершенной n-мерности бикомпакта X следует совпадение трех основных размерностных инвариантов $\dim X = \operatorname{ind} X = \operatorname{Ind} X = n$. Оставалось неясным, следует ли из этого совпадения размерностей совершенная n-мерность бикомпакта X. В настоящей заметке дается отрицательный ответ на этот вопрос.

Под разбиением w будем понимать покрытие пространства X конечным числом канонических замкнутых множеств с дизъюнктными ядрами. Точка x есть точка k-кратности относительно разбиения w, если любая открытая окрестность точки x пересекается не менее чем с k различными элементами разбиения. Система $A = \{w_\alpha\}$ разбиений w_α называется измельчающейся последовательностью разбиений, если: а) для любого замкнутого множества $F \subseteq X$ и любой его открытой окрестности OF существует разбиение $w \subseteq A$, что $\operatorname{St}_w F \subseteq OF$; б) для любых двух разбиений $w_1, w_2 \subseteq A$ существует $w_3 \subseteq A, w_3 > w_1, w_3 > w_2$. L_ω — трансфинитная прямая длины ω , между трансфинитами ω и ω 1 подклеен сегмент $L_\alpha = [0, 1]_\alpha$ (0 склеивается с ω , 1 — с ω + 1).

 Π редложение 1. Пространство $Y = L_{\omega_1} \times L_{\omega_2}$ не совершенно 2-мерно.

Достаточно показать, что любая измельчающаяся последовательность A разбиений пространства Y содержит разбиение кратности ≥ 4 хотя, как следует из работы (2), dim Y = ind Y = Ind Y = 2.

Символом $Fr\ w$ для любого разбиения w топологического пространства будем обозначать дополнение до объединения внутренностей всех элементов разбиения w. Множество P будем называть множеством k-кратности относительно разбиения w, если для любой точки $x \in P$ x есть точка k-кратности относительно разбиения w.

Пемма 1. Пусть на $X=L_{\omega}\times I$ существует измельчающаяся последовательность A разбиений и существует разбиение $w\in A$ такое, что $\operatorname{Fr} w \cap \{(\omega)\times I\} \supseteq (\omega)\times (a,\ b)$ — отрезок трехкратности относительно разбиения w.

Тогда существует такое разбиение $w_1 \in A$, что w_1 является не менее чем четырехкратным разбиением.

Доказательство. Выберем сегмент $[a_i, b_1] \subseteq (a, b)$, тогда для замкнутого множества $F = L_\omega \times [0, a_1]$ и открытого множества $G = L_\omega \times [0, b_1]$, содержащего множество F, существует разбиение $w' \subseteq A$ такое, что $\operatorname{St}_w F \subseteq G$. В дальнейшем множество $\operatorname{St}_w F$, построенное для таких специальных множеств F п G, будем обозначать как $\operatorname{St}(w', [a_1, b_1])$. Множество $F_1 = \operatorname{Fr} \{\operatorname{St}(w', [a_1, b_1])\} \cap \{(\omega) \times I\} \subseteq (\omega) \times (a_1, b_1)$, а точка (ω, \overline{x}) , где $\overline{x} = \max \{x \in (a_1, b_1) \colon (\omega, x) \subseteq F_1\}$, есть точка четырехкратности для разбиения $w_1 \subseteq A(w_1 > w, w_1 > w')$. Лемма доказана.

Пусть A — измельчающаяся последовательность разбиений на пространстве $X = L_{\omega} \times I$, а U — открытое подмножество пространства X такое, что $[U] \cap \{(\omega) \times I\} = (\omega) \times (c, d)$, еще дан сегмент $[c_1, d_1] = (c, d)$. Существует разбиение $w \in A$, по которому можно построить множество $K = \operatorname{Fr} \{\operatorname{St} (w, [c_1, d_1])\}$.

Пемма 2. Если множество $K_1 = K \cap ((\omega) \times (c, d))$ не содержит отрезка двукратности относительно разбиения w пространства [U], то существует такое трансфинитное число $\alpha \in L_{\omega}$ и такое нигде не плотное s (c, d) множество C, что $U \cap K \cap ([\alpha, \omega] \times I) = U \cap ([\alpha, \omega] \times C)$.

(c,d) множество C, что $U \cap K \cap ([\alpha,\omega] \times I) = U \cap ([\alpha,\omega] \times C)$. Π оказательство. Положим $U_1 = U \cap \text{Int } \{\text{St }(w,[c_1,d_1])\}$, $U_2 = U \cap \text{Int } \{X \setminus \text{St }(w,[c_1,d_1])\}$, $Z = L_\omega \times (x)$ и рассмотрим два множества: $V_1 = \{x \in (c,d) \colon U_1 \cap Z \text{ конфинально }(\omega,x) \text{ в } Z \text{ и } U_2 \cap Z \text{ не конфинально }(\omega,x) \text{ в } Z \}$, $V_2 = \{x \in (c,d) \colon U_2 \cap Z \text{ конфинально }(\omega,x) \text{ в } Z \}$ и $U_1 \cap Z \text{ не конфинально }(\omega,x) \text{ в } Z \}$.

В силу неравенства $\chi(\omega, L_{\omega}) \neq \chi(x, I)$ и того, что множество K_1 не содержит отрезка двукратности, получаем $V_1 \cap V_2 = \phi$, V_1 , V_2 открыты в (c, d), $[V_1 \cup V_2] = (c, d)$ в (c, d). Пусть $C = (c, d) \setminus (V_1 \cup V_2)$, и лемма 2 легко получается.

Пемма 3. Пусть дана измельчающаяся последовательность A разбиений пространства $X = L_{\omega} \times I$, тогда существует множество $B = \{w_i: i=1,2,\ldots\}$ разбиений из системы A и множество $Q = [\alpha, \omega] \times [f,h] = W_1 \cup W_2 \cup F$ ($W_1 \cap W_2 = \phi, W_1, W_2$ открыты в Q, F замкнуто и нигде не плотно в Q) такие, что для любого открытого элемента (f^k, h^k) счетной базы на (f,h) существует такое $w_k \in B$, что при этом выполнены условия

$$egin{aligned} & ext{Fr } \{ ext{St } (w_{\scriptscriptstyle h}, \ [f^{\scriptscriptstyle h}, \ h^{\scriptscriptstyle h}]) \} \cap W_{\scriptscriptstyle 1} = (L_{\scriptscriptstyle \omega} imes C_{\scriptscriptstyle k}) \cap W_{\scriptscriptstyle 1}, \ & ext{Fr } \{ ext{St } (w_{\scriptscriptstyle h}, \ [f^{\scriptscriptstyle h}, \ h^{\scriptscriptstyle h}]) \} \cap W_{\scriptscriptstyle 2} = (L_{\scriptscriptstyle \omega} imes \mathbf{D}_{\scriptscriptstyle h}) \cap W_{\scriptscriptstyle 2}, \ & ext{Fr } \{ ext{St } (w_{\scriptscriptstyle h}, \ [f^{\scriptscriptstyle h}, \ h^{\scriptscriptstyle h}]) \} \subseteq [0, \ \omega] imes (f^{\scriptscriptstyle h}, \ h^{\scriptscriptstyle h}), \end{aligned}$$

 $e\partial e \ \mathbf{C}_{k} \ u \ \mathbf{D}_{k} \ н u e \partial e \ н e \ n$ лотны $e \ (f, h)$.

До казательство. 1) Если для любого множества (f^k, h^k) существует разбиение $w_k \in A$ такое, что Fr $\{\operatorname{St}(w_k, [f^k, h^k])\} \cap ((\omega) \times I)$ не содержит отрезка двукратности относительно разбиения w_k , то $B = \{w_k: k=1,2,\ldots\}$ и, полагая в лемме 2 $U=L_\omega \times I$, получаем утверждение леммы 3.

2) Если же для некоторого элемента (f_1, h_1) базы на I и любого разбиения $w' \in A$ множество $\operatorname{Fr} \{\operatorname{St}(w', [f_1, h_1])\} \cap ((\omega) \times I)$ содержит отрезок $(\omega) \times (c_2, d_2)$ двукратности относительно разбиения w' пространства X, то множества $U' = \operatorname{Int} \{\operatorname{St}(w', [f_1, h_1])\}$ и $U'' = X \setminus \operatorname{St}(w', [f_1, h_1])$ удовлетворяют условиям леммы 2. Действительно, если для некоторого $[c_3, d_3] \subset (c_2, d_2)$ существует разбиение w'' такое, что множество $\operatorname{Fr} \{\operatorname{St}(w'', [c_3, d_3])\} \cap ((\omega) \times I)$ содержит отрезок $(\omega) \times (c_4, d_4)$, то это отрезок трехкратности для любого разбиения w(w > w', w > w''). По лемме 1 это влечет не совершенную 2-мерность пространства Y. Если такого разбиения w'' не существует, то, полагая сначала U = U', а потом U = U'', $[f, h] = [c_2, d_2]$ и применяя лемму 2, где (c, d) — элемент счетной базы отрезка (c_2, d_2) , получаем лемму 3.

Доказательство предложения 1. Пусть на пространстве Y дана измельчающая система разбиений. Для любого $\beta < \omega_2$ подпространство $X_{\beta} = L_{\omega_1} \times I_{\beta} \subseteq Y$; согласно лемме 3 существуют множества B_{β} и $Q = [\alpha_{\beta}, \omega_1] \times [f, h]_{\beta}$, а из несовпадения $\chi(\omega_1, L_{\omega_1})$ и $\chi(\omega_2, L_{\omega_2})$ следует, что существует $\bar{\alpha}$ и множество $M = \{\beta < \omega_2: \alpha_{\beta} < \bar{\alpha}\}$, конфинальное ω_2 . Для пространства $X^{\bar{\alpha}} = I_{\bar{\alpha}} \times L_{\omega_2}$ также справедлива лемма 3: существуют множества $\bar{B}^{\bar{\alpha}}$ и $\bar{Q}^{\bar{\alpha}} = [\beta', \omega_2] \times [f, h]^{\bar{\alpha}}$.

Тогда при некотором $\overline{\beta} > \beta'$, где $\overline{\beta} \subset M$, $Q^{\overline{\alpha}} \cap Q_{\overline{\beta}} \neq \phi$ и содержит открытое множество, например, $V = \operatorname{Int}(W_1^{\overline{\alpha}} \cap W_{1\overline{\beta}})$, где $W_1^{\overline{\alpha}}$ и $W_{1\overline{\beta}}$ получаются из леммы 3. Пусть открытое множество $W = (f^{\overline{\alpha}}, h^{\alpha}) \times (f_{\overline{\beta}}, h_{\overline{\beta}}) \subset V$. Следовательно, существуют разбиения $w^{\overline{\alpha}}$ и $w_{\overline{\beta}}$ и множества $\mathbf{C}^{\overline{\alpha}}$ и $\mathbf{C}_{\overline{\beta}}$, что $W \cap \operatorname{Fr} \{\operatorname{St}(w^{\overline{\alpha}}, [f^{\overline{\alpha}}, h^{\overline{\alpha}}])\} \cap \operatorname{Fr} \{\operatorname{St}(w_{\overline{\beta}}, [f_{\overline{\beta}}, h_{\overline{\beta}}])\} = W \cap (L_{\omega_1} \times \mathbf{C}_{\overline{\beta}}) \cap (\mathbf{C}^{\overline{\alpha}} \times L_{\omega_2})$,

а это множество является множеством четырехкратности для любого разбиения $w (w > w\bar{\alpha}, w > w\bar{\beta})$.

Предложение 1 доказано.

Относительно совершенной размерности справедлива еще

T е о р е м а 1. K — упорядоченный континуум, I — сегмент действительной прямой; тогда $K \times I$ совершенно 2-мерно.

Кроме того, с существенным использованием континуум-гипотезы (с = 💸) можно доказать, что тихоновский квадрат лексикографически упорядоченного квадрата совершенно 2-мерен.
Автор выражает благодарность В. И. Пономареву за помощь в работе.

Московский государственный упиверситет им. М. В. Ломоносова

Поступило 12 V 1972

НИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. С. Александров, В. И. Пономарев, Сибирск. матем. журн., **1**, № **1** (1960). ² И. К. Лифанов, ДАН, **180**, № **3** (1968).