БИОХИМИЯ

УДК 577.153

Е. В. РОЗЕНГАРТ, И. Н. СОБОЛЕВА, М. Л. ИНДЕНБОМ, Л. Н. ТИХОНОВА, Н. В. ХРОМОВ-БОРИСОВ

НОВЫЙ СПЕЦИФИЧЕСКИЙ СУБСТРАТ АЦЕТИЛХОЛИНЭСТЕРАЗЫ

(Представлено академиком Е. М. Крепсом 7 VIII 1972)

Субстратная специфичность ацетилхолинэстеразы (АХЭ, КФ 3.1.1.7) и холинэстеразы (бутилхолинэстеразы, БуХЭ, КФ 3.1.1.8) изучена с использованием многих десятков сложных эфиров различного строения (¹). Из всего многообразия исследованных соединений только ацетил-βметилхолин (АМХ) оказался специфическим субстратом АХЭ (²): он гидролизовался под действием АХЭ бычьих эритроцитов в 30 раз быстрее, чем под действием БуХЭ лошадиной сыворотки (³, ⁴). Благодаря этому АМХ стал одним из основных субстратов при идентификации холинэстераз различного происхождения.

Ранее было показано (5), что в результате постепенной замены метильных радикалов в катионной группировке ацетилхолина (АХ) на этильные происходит заметное снижение скорости гидролиза под действием БуХЭ, в то время как скорость гидролиза под действием БуХЭ, в то время как скорость гидролиза под действием АХЭ почти не меняется. Поскольку возможность и степень гидрофобного взаимодействия радикалов, входящих в аммониевую группировку АХ, зависит не только от их величины, но и от их конформационных возможностей, мы решили синтезировать и исследовать аналоги АХ, содержащие в катионной части молекулы пирролидиниевые и пиперидиниевые группировки (соединения I, II, III и IV):

где $R = CH_3$ (I и III) или C_2H_5 (II и IV).

Синтез соединений I, II, III (6) и IV (6) проводился следующим образом: при ацилировании хлористым ацетилом N-(β-оксиэтил)-пиперидина (7) и N-(β-оксиэтил)-пирролидина (8) в абсолютном бензоле получали N-(β-ацетоксиэтил)-пиреридин (выход 70—75%) и N-(β-ацетоксиэтил)-пиреридин (9) (выход 72—79%), которые подвергали йодал-килированию без растворителя. Аналитические данные и свойства полученных соединений приведены в табл. 1. В качестве источников ферментов использованы очищенный препарат БуХЭ сыворотки крови лошади (Институт им. Мечникова, Москва) и водорастворимый пренарат АХЭ бычьях эритроцитов (завод медпрепаратов, мясокомбинат им. Кирова, Ленинград). Холинэстеразную активность определяли потенциометрическим методом (3). Кинетические параметры реакции (константу

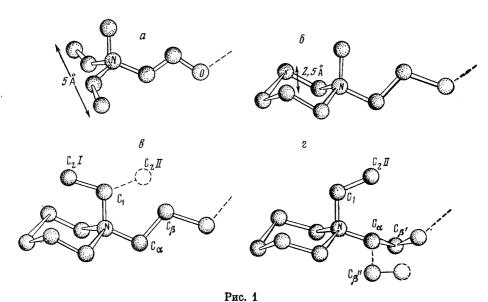
Михаэлиса $K_{\rm M}$ и максимальную скорость V) определяли либо графическим (3), либо аналитическим (10 , 11) методами. Активность катилитического центра фермента (a_c) по отношению к изученным субстратам рассчитывали по формуле (3): $a_c = V/[E]$, где E — концентрация активных центров фермента, вычисленная на основании параметров гидролиза AX: $a_c(EvX2) = 6 \cdot 10^4$ мин⁻¹ (12), $a_c(AX2) = 3 \cdot 10^5$ мин⁻¹ (3).

АХ: $a_c(\text{БуХЭ}) = 6 \cdot 10^4 \text{ мин}^{-1} \ (^{12}), \ a_c(\text{АХЭ}) = 3 \cdot 10^5 \text{ мин}^{-1} \ (^3).$ Как видно из табл. 2, в реажциях с участием АХЭ субстратные характеристики изученных соединений были близки к АХ: величины a_c оказались лишь немногим ниже; высокие концентрации этих ацетатов

Таблица **1** Аналитические панные и свойства исслепованных соединений

№ соеди- нения	Растворитель для кристалли- зации, т. пл.	Вы- ход, %	Найдено, %				Брутто-	Вычислено, %			
			С	н	И	J	формула	С	н	N	J
ī	Метанол — абс.	92.5	35,05	5,97	4 87	43 79	C ₉ H ₁₈ J NO ₂	36 42	6 06	4 68	42,44
**	эфир, очень гигроскопичен	,	,	,				,	,		ĺ
ΙΙ	Изопропило- вый спирт, очень гигро-	87,5	38,60	6,35	4,90	40,80	$C_{10}H_{20}JNO_2$	38,62	6,43	4,47	40,52
III	ско пичен Изо пропило- вый спирт,	97	38,61	7,10	4,46	40,62	C ₁₀ H ₂₀ J NO ₂	38,62	6,43	4,47	40,52
IV	106—108° Изопропило-	40	40,83	7,04	4,25	38,80	C ₁₁ H ₂₂ JNO ₂	40,37	6,78	4,28	38,78
	вый спирт, 86—88°										

Таблица 2


Кинетические параметры гидролиза исследованных производных AX под действием $AX\partial$ бычьих эритроцитов и $ByX\partial$ лошадиной сыворотки (pH 7,2; 25°)

	A	хэ	Б	а _с (АХЭ)/а _с		
Субстраты	ас, мин-1	$K_{\mathbf{M}}, M$	а _с , мин-1	K_{M}, M	(БуХЭ)	
${ m CH_3C(O)OCH_2CH_2N \atop II}^{\dagger}_{\begin{subarray}{c} { m CH_3}{ m S}} { m CH_3C(O)OCH_2CH_2N \atop III}_{\begin{subarray}{c} { m III} \\ { m III} \\ { m IV} \\ \end{subarray}}$	$\begin{array}{c} 3 \cdot 10^5 \\ 2, 5 \cdot 10^5 \\ 2, 5 \cdot 40^5 \\ 1, 9 \cdot 10^5 \\ 1, 6 \cdot 10^5 \end{array}$	1·10 ⁻⁴ 2,6·10 ⁻⁴ 1,8·10 ⁻⁴ 5,0·10 ⁻⁴ 5,0·10 ⁻⁴	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 20 8 65 8	
$CH_3C(O)OCH(CH)_3CH_2\overset{+}{N}(CH_3)_3(^3, ^4)$	1.105	1.10-3	3.103	7.10-4	30	

тормозили активность AXЭ; величины оптимальной концентрации субстратов были также одного порядка. Таким образом, заключение аммониевого азота в насыщенный цикл практически не сказалось на свойствах этих соединений как субстратов АХЭ.

Совсем иную картину представляют реакции с участием БуХЭ. Величина a_c для соединения I была в 5 раз, а для соединения III—даже в 20 раз ниже, чем для АХ. Более низкие значения величин $K_{\rm M}$ (по сравнению с АХ) связаны, видимо, с так называемой непродуктивной сорбцией этих веществ па активной поверхности БуХЭ (6). Таким образом, в случае БуХЭ заключение аммониевого азота в насыщенный цикл снижало скорость гидролиза, причем расширение цикла (переход от пирролидиниевого к пиперидиниевому производному) усугубляло этот эффект.

Оказалось, что метилаты I и III гидролизовались под действием БуХЭ медленнее, чем не содержащие гетероциклов метилаты с «утяжеленной» катионной группировкой типа NEt_2Me (5). Вследствие гибкости этильных радикалов расстояние между β -углеродными атомами этилов может изменяться в пределах от 2,5 до 5Å (рис. 1a). Если же азот включен в 5- или 6-членный гетероцикл (рис. 16), то это расстояние зафиксировано и равно приблизительно 2,5Å. Вследствие этого повышается вероятность образования ван-дер-ваальсовых связей с гидрофобным участком, составляющим непосредственное обрамление анионного центра фермента. У БуХЭ этот участок играет относительно большую роль, чем у АХЭ (13). Поэтому, вероятно, метилаты I и, особенно, III отличаются весьма заметным снижением скорости гидролиза под действием БуХЭ.

Если в метилатах I и III заменить метильные радикалы в аммониевой группировке на этильные (этилаты II и IV), то весьма существенным образом ограничатся конформационные возможности «холиновой» части молекулы. В этилатах расположение C_{α} и C_{β} , изображенное на рис. 1e, возможно только при положении углерода C_2 , близком к C_2 I. Поворот этильного радикала в сторону C_2 II неизбежно приведет к смещению C_{β} в положение $C_{\beta'}$ или $C_{\beta'}$ (рис. 1e). Это должно повлиять на возможности образования контактов β -углеродных атомов (кольца и цепочки) с гидрофобным окружением анионного центра фермента. По-видимому, вследствие этого этилаты II и IV оказались лучшими субстратами БуХЭ, чем их метильные аналоги I и III.

Количественной мерой специфичности субстратов может служить отношение $a_c(\mathrm{AX}\partial)/a_c(\mathrm{ByX}\partial)$. Эта величина приведена в табл. 2. Для сравнения в табл. 2 представлены нараметры ферментативного гидролиза АМХ. Оказалось, что по специфичности соединение I сопоставимо с АМХ, а иодметилат N-ацетоксиэтилипперидиния (соединение III) даже превосходит АМХ в 2 раза. Преимущество соединения III перед АМХ заключается в том, что при одинаково низкой (в 20 раз ниже, чем АХ) скорости гидролиза под действием БуХЭ, расщепление подметилата N-ацетоксиэтилипперидиния под действием АХЭ протекало в 2 раза быстрее, чем АМХ, и практически скорость этой реакции соизмерима со скоростью гидролиза АХ. Кроме того, в отличие от соединения III АМХ оптически активен, причем его D-изомер не гидролизуется под

действием АХЭ (14), и поэтому общую скорость ферментативного гидролиза определяет соотношение изомеров в препарате сложного эфира.

Институт эволюционной физиологии и биохимии им, И. М. Сеченова Академии наук СССР Поступило 28 VII 1972

Институт экспериментальной медицины Академии медицинских наук СССР Ленинград

НИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Н. Голиков, В. И. Розенгарт, Холинэстеразы и антихолинэстеразные вещества, Л., 1964. ² G. А. Alles, R. С. Наwes, J. Biol. Chem., 133, 375 (1940). ³ В. А. Яковлев, Кинетика ферментативного катализа, «Наука», 1965. ⁴ А. П. Бресткин, Д. Л. Певзнер, Биохимия, 36, 81 (1971). ⁵ Р. Барлоу, Введение в химическую фармакологию, М., 1959, стр. 190. ⁶ А. П. Бресткин, Е. В. Розенгарт и др., ДАН, 205, № 3 (1972). ⁷ А. Ladenburg, Ber., 14, 1877 (1881). ⁸ Х. М. Вассерман, Сборн. научн. работ мед. инст., Рига, в. 5, 23 (1956). ⁹ R. W. Вгітывесотье, D. G. Rowsell, Int. J. Neuropharmacol., 8, 131 (1969). ¹⁰ И. Н. Соболева, В. А. Самокиш, Е. В. Розенгарт, Биохимия, 34, 1173 (1969). ¹¹ А. Р. Вгезtкіп, Е. V. Rozengart et al., Biochim. et biophys. acta, 191, 155 (1969). ¹² А. П. Бресткин, И. Л. Брик, Биохимия, 32, 3 (1967). ¹³ М. И. Кабачник, А. А. Абдувахабов и др., Усп. хим., 39, 1050 (1970). ¹⁴ А. Н. Вескеtt, N. J. Harper, J. W. Clitherow, J. Pharm. Pharmacol., 15, 362 (1963).