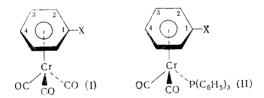
УДК 538.27

ФИЗИЧЕСКАЯ ХИМИЯ


Л. А. ФЕДОРОВ, П. В. ПЕТРОВСКИЙ, Э. И. ФЕДИН, Н. К. БАРАНЕЦКАЯ, В. И. ЗДАНОВИЧ, В. Н. СЕТКИНА, член-корреспондент АН СССР Д. Н. КУРСАНОВ

## СПЕКТРЫ Я. М. Р. С 13 И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В л-АРЕНОВЫХ КОМПЛЕКСАХ ХРОМА

Для исследования  $\pi$ -ареновых комплексов переходных металлов широко применяется я.м.р.  $H^1$  (1-4), тогда как спектры я.м.р.  $C^{13}$  известны лишь для нескольких соединений (7,8). Между тем остается совершенно не выясненным вопрос о том, сохраняется ли при комплексообразовании относительное распределение электропной плотности в замещенном ареновом лигание.

Мы изучили спектры я.м.р. С<sup>13</sup> л-ареновых комплексов хрома и на основании данных об экранировании различных ядер получили сведения о распределении электронной плотности в монозамещенных л-ареновых лиганиах этих комплексов.

Для исследования были выбраны две серии соединений, в которых ареновыми лигандами являются однозамещенные бензола,  $\pi$ -связанные с группой  $Cr(CO)_3$  (I) и  $Cr(CO)_2P(C_6H_5)_3$  (II). Экспериментальные данные привелены в табл. 1-3.



Полученные результаты приводят к двум основным заключениям. Вопервых, при образовании  $\pi$ -комплекса возрастает абсолютное экранирование всех ядер атомов углерода ароматического кольца. Во-вторых, в результате комплексообразования заметно изменяется относительное экранирование ядер  $C^{13}$  различных положений ароматического кольца лиганда.

Для выявления особенностей распределения относительного экранирования обычно сравнивают химические сдвиги ядер  $C^{13}$  и  $H^1$  в исходных ароматических соединениях и в соответствующих  $\pi$ -комплексах. Наиболее показательно, очевидно, сравнение химических сдвигов ядер  $C^{13}$  и  $H^1$  в n-положении ароматических соединений, для которых электронный эффект заместителя, как показало исследование исходных бензолов (5, 6), наиболее свободен от посторонних влияний.

Из данных табл. 1 и 2, а также из работы (2) следует, что в ареновых  $\pi$ -комплексах наблюдается симбатность между химическими сдвигами ядер  $C^{13}$  и  $H^4$  в n-положении ареновых  $\pi$ -комплексов. Аналогичная зависимость известна для соответствующих однозамещенных бензолов (5). Наблюдается также удовлетворительное соответствие между химическими сдвигами ядер  $C^{13}$  в n-положении  $\pi$ -комплексов (I) и соответствующих им бензолов. Аналогичная зависимость известна и для я.м.р.  $H^4$  (2). Очевидно, что эти зависимости свидетельствуют об определенной взаимосвязи между

. Таблица  ${f 1}$  . Нараметры спектров я.м.р.  $C^{13}$  некоторых  $\pi$ -ареновых комплексов хрома

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 С <sup>13</sup> (м. д. от ТМС) |                                     |                                              |                                              |                         |                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------|-------------------------------------------------------------------------------------|--|--|--|
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>1</sub>                   | $C_2$                               | C <sub>3</sub>                               | C4                                           | CO-Cr                   | CH <sub>3</sub>                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | Соє                                 | единен <b>ие</b>                             | типа I                                       |                         |                                                                                     |  |  |  |
| $egin{array}{l} H & N(CH_3)_2 & OCH_3 & CH_3 & C_6H_5 & COCH_3 & COOCH_3 & COOCH_5 &$ | 140,4<br>109,4<br>110,5          | 92,4* 74,7 78,2 92,3 92,2 94,2 94,3 | 96,5<br>94,7<br>94,0<br>92,6<br>89,4<br>89,2 | 83,4<br>85,5<br>91,2<br>94,5<br>95,1<br>96,3 | 233,2<br>232,7<br>230,5 | 38,8<br>55,5<br>—<br>46,5<br>194,8Cl <sup>3</sup> OCH <sub>3</sub>                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | Coe                                 | динение                                      | типа II                                      | 230,2                   | 1 32,0                                                                              |  |  |  |
| $H$ $N(CH_3)_2$ $OCH_3$ $CH_3^{**}$ $C_6H_5$ $COOCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103,5<br>103,1                   | 89,6 * 71,8 74,5 88,7 88,4 90,6     | 93,1<br>91,4<br>89,6<br>89,7<br>87,8         | 83,3<br>84,5<br>88,4<br>91,2<br>91,9         | 240,5                   | $ \begin{array}{ c c c c } \hline 39,6 \\ 54,9 \\ 20,7 \\ \hline 52,0 \end{array} $ |  |  |  |

<sup>\*</sup> Химический сдвиг бензола составляет 128,5 м. д.; для оценки сдвигов в монозамещенных бензолах см. табл. 2, а также (\*,\*). \*\* Для  $\pi$ -2,4,6-(CH<sub>3</sub>)<sub>3</sub>C<sub>6</sub>H<sub>3</sub>Cr(CO)<sub>2</sub>P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> химические сдвиги составляют: 105,2 (2,4,6-C<sup>13</sup>) и 90,2 (1,3,5-C<sup>13</sup>) м.д.

Таблипа 2

Сравнение влияния заместителей в однозамещенных бензолах и соответствующих  $\pi$ -комплексах на экранирование различных ядер ароматического кольца ( $\Delta\delta$   $C^{13}$ , м.д.)

|                                                                                                      | $C_6H_5X$                                                      |                                                               |                            | $\pi$ -C <sub>0</sub> H <sub>5</sub> XCr(CO) <sub>3</sub> (I) |                                                               |                                              | $\pi$ -C <sub>6</sub> H <sub>5</sub> XCr(CO) <sub>2</sub> P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> (II) |                    |                                                    |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------|
| X                                                                                                    | C <sub>2</sub>                                                 | С3                                                            | C <sub>4</sub>             | $C_2$                                                         | С3                                                            | C4                                           | C <sub>2</sub>                                                                                                | C <sub>3</sub>     | C4                                                 |
| N(CH <sub>3</sub> ) <sub>2</sub><br>OCH <sub>3</sub><br>H<br>COCH <sub>3</sub><br>COOCH <sub>3</sub> | $\begin{vmatrix} +15,5 \\ +14,7 \\ -0,2 \\ -0.7 \end{vmatrix}$ | $\begin{bmatrix} -0,9\\ -0,7\\ 0\\ -0,2\\ +0.5 \end{bmatrix}$ | +11,8 $+8,1$ $-4,2$ $-4,0$ | $+17,7 \\ +14,2 \\ -1,8 \\ 4,0$                               | $\begin{bmatrix} -4,1\\ -2,3\\ 0\\ +3,0\\ -3,2 \end{bmatrix}$ | $\begin{vmatrix} +6,9 \\ -2,7 \end{vmatrix}$ |                                                                                                               | -3.5 $-1.8$ $-1.8$ | $\begin{vmatrix} +6,3\\ +5,1\\ -2,3 \end{vmatrix}$ |

Таблика 3

Изменение экранирования ядер С<sup>13</sup> ароматического кольца при замене карбонильного лиганда на трифенилфосфиновую группировку

| X                                                                 | $\Delta \delta C^{13} = \delta C^{13} (I) - \delta C^{13} (II) (M.H.)$ |              |                                              |                                         | $\Delta \delta C^{13} = \delta C^{13} (I) - \delta C^{13} (II) (M.д.)$ |                |                |
|-------------------------------------------------------------------|------------------------------------------------------------------------|--------------|----------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|----------------|----------------|
|                                                                   | C <sub>2</sub>                                                         | Сз           | C4                                           | X                                       | $C_2$                                                                  | C <sub>3</sub> | C <sub>4</sub> |
| N(CH <sub>3</sub> ) <sub>2</sub><br>C <sub>6</sub> H <sub>5</sub> | +2,9                                                                   | -3,4<br>-3,4 | $\begin{bmatrix} -0.2 \\ +0.3 \end{bmatrix}$ | CH <sub>3</sub>                         |                                                                        | +2,8           | +1,2           |
| OCH <sub>3</sub>                                                  | +3,7                                                                   | +3,3         | -+1,0                                        | COCH <sub>3</sub><br>COOCH <sub>3</sub> | $\frac{1}{3,7}$                                                        | -j-1,4         | +4,4           |

электронным распределением в  $\pi$ -комплексах (I) и в исходных ароматических соединениях.

В табл. 2 химические сдвиги  $C^{13}$  монозамещенных ареновых комплексов I и II сопоставлены со сдвигами в незамещенных соединениях  $\pi$ - $C_6H_5C(CO)_3$  и  $\pi$ - $C_6H_5C(CO)_2P(C_6H_5)_3$ . Из этих данных следует, что в  $\pi$ -комплексах качественно наблюдается та же картина изменения экранирова-

ния в зависимости от природы заместителя, что и в исходных бензолах:

орто, пара- $C^{13}$ : N(CH<sub>3</sub>)<sub>2</sub>, OCH<sub>3</sub> > CH<sub>3</sub>, H, C<sub>6</sub>H<sub>5</sub> > COCH<sub>3</sub>, COOCH<sub>3</sub>, мета- $C^{13}$ : N(CH<sub>3</sub>)<sub>2</sub>, OCH<sub>3</sub> < CH<sub>3</sub>, H, C<sub>6</sub>H<sub>5</sub> < COCH<sub>3</sub>, COOCH<sub>3</sub>.

Это позволяет заключить, что в  $\pi$ -комилексах электронодонорные заместители  $N(CH_3)_2$  и  $OCH_3$ , как и в соответствующих бензолах, увеличивают электронную илотность на  $\sigma$ - и n-углеродах  $C_2$  и  $C_4$ . Действие электроноакцепторных заместителей  $COCH_3$  и  $COOCH_3$  противоположно. Таким образом, в лиганде ароматических  $\pi$ -комплексов (I) и (II) сохраняется тот же порядок изменения экранирования и распределения электронной плотности, который наблюдается для самих однозамещенных бензолов ( $^5$ ,  $^6$ ). Следовательно, функции атомов  $C_{2-4}$  в  $\pi$ -комплексах аналогичны функциям соответствующих атомов, известным для некоординированных молекул.

Отметим особенность экранирования ядер углерода в м-ноложении. Для них не наблюдается линейной зависимости химических сдвигов  $\delta C_2^{13}$ (комплекс)  $\sim \delta C^{43}$  (лиганд), характерной для ядер  $C_4$ , находящихся в n-положении. Известно (по данным я.м.р.  $C^{13}$  ( $^5$ ,  $^6$ ), см., в частности, табл. 2), что в м-положении однозамещенных бензолов альтернирующий характер распределения электронной плотности проявляется менее четко: эффекты столь малы, что не всегда позволяют идентифицировать положительный заряд в случае электронодонорных заместителей и отрицательный — в случае электроноакцепторных. Для л-комплексов (I) и (II) это ослабление эффекта заместителя уже не наблюдается. Как следует из данных табл. 2, изменения экранирования (и соответственно изменение электронной плотности) в м-ноложении имеют тот же порядок величины, что и в о- и п-положениях и противоположны по знаку. Таким образом, в л-комплексах проводимость электронного влияния в плоскости цикла песколько модифицирована, и на м-атомах углерода и водорода (последнее следует из экспериментальных данных, полученных в (2)), предсказываемое теорией (9-11) альтернирование зарядов проявляется более четко, чем для некоординированных органических соединений.

Интересно сопоставить изменения в экранировании ядер  $C^{13}$ , наблюдаемые при замещении одной СО-группы в соединениях I на трифенилфосфиновый лиганд. Как видно из табл. 3, при переходе от I к II происходит смещение в сильное поле всех сигналов, относящихся к ароматическому кольцу. Очевидно, этот эффект обусловлен донорной способностью фосфиновых лигандов, при этом наиболее отчетливые результаты дает сравнение химических сдвигов ядер  $C^{13}$  в n-положении. Это сравнение показывает, что имеется удовлетворительное соответствие  $\delta C_4^{13}(I) \sim \delta C_4^{13}(II)$  (табл. 1). Однако степень влияния трифенилфосфинового лиганда явно зависит также и от природы заместителя X. Из данных табл. 3 видно, что в случае электроноакцепторных заместителей  $COCH_3$  и  $COOCH_3$  эффект трифенилфосфинового лиганда больше, а в случае электронодонорных заместителей  $N(CH_3)_2$  и  $OCH_3$  меньше, чем для X=H.

Таким образом, данные я.м.р.  $C^{13}$  показывают, что замена СО-лиганда на донорный  $PPh_3$ -лиганд в ареновых комплексах хрома приводит к увеличению электронной плотности в  $\pi$ -ароматическом лиганде, при этом влияние заместителей в  $\pi$ -ароматическом кольце передается в n-положение слабее, чем в соответствующих однозамещенных бензолах.

Соединения I синтезированы по методике (<sup>12</sup>). Соединения II молучены из соответствующих аренхромтрикарбонилов и трифенилфосфина при у.-ф. облучении по методике Штромейера (<sup>13</sup>).

Соединения II с  $X = COCH_3$  и  $C_6H_5$  синтезированы впервые. Для II  $X = COCH_3$  т. пл.  $181-182^\circ$  (из гентана). Выход 55% от теоретического.

Найдено %: С 68,53; Н 4,89; Р 6,10; Сг 10,22 С<sub>28</sub>Н<sub>23</sub>СгРО<sub>3</sub>. Вычислено %: С 68,57; Н 4,69; Р 6,33; Сг 10,61

Для II  $X=C_6H_5$  т. пл.  $168-170^\circ$  (из гентана). Выход  $47\,\%$  от теоретического.

Найдено %: С 72,95; Н 4,97: Р 5,97 С $_{32}$ Н $_{25}$ Сг $_{20}$ О $_{2}$ . Вычислено %: С 73,28; Н 4,77; Р 5,91

Спектры я.м.р.  $C^{13}$  получены на спектрометре Брукер НХ-90 в режиме преобразования Фурье и протонного подавления с шумовой модуляцией (для уточнения отнесения сигналов  $C_2$  и  $C_3$  на некоторых примерах —  $X = OCH_3$  и  $COCH_3$  для  $I - были также получены спектры без протонного подавления). Рабочая частота 22,63 Мгц. Дпаметр ампулы 10 мм. Температура образца <math>30-40^\circ$ . Растворитель — хлороформ. Отсчет химических сдвигов ведется в слабое поле от тетраметилсилана, использованного в качестве внутреннего эталона.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 4 IX 1972

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> H. P. Fritz, C. G. Kreiter, J. Organomet. Chem., 7, 427 (1967). <sup>2</sup> A. Mangini, F. Taddei, Inorg. chim acta, 2, 8 (1968). <sup>3</sup> R. V. Emanuel. E. W. Randall, J. Chem. Soc. A, 1969, 3002. <sup>4</sup> A. Wu, E. B. Biehl, P. C. Reeves, J. Organomet. Chem., 33, 53 (1971). <sup>5</sup> H. Spiesecke, W. G. Schneider, J. Chem. Phys., 35, 731 (1961). <sup>6</sup> G. E. Maciel, J. J. Natterstad, J. Chem. Phys., 42, 2427 (1965). <sup>7</sup> B. E. Mann, Chem. Commun., № 16, 976 (1971). <sup>8</sup> L. F. Farnell, E. W. Randall, E. Rosenberg, Chem. Commun., № 18, 1078 (1971). <sup>9</sup> K. T. Wu, B. Dailey, J. Chem. Phys., 41, 2796 (1964). <sup>10</sup> P. Lazzaretti, F. Taddei, Org. Magn. Res. 3, 283 (1971). <sup>11</sup> W. F. Hehre, L. Radom, J. A. Pople, J. Am. Chem. Soc., 94, 1496 (1972). <sup>12</sup> B. Nichols, M. C. Whiting, J. Chem. Soc., 1959, 551; W. Strohmeier, Chem. Ber., 94, 2490 (1961). <sup>13</sup> W. Strohmeier, H. Hellman, Chem. Ber., 96, 2859 (1963).