УДК 541.67+541.572.5+547.24

ФИЗИЧЕСКАЯ ХИМИЯ

В. П. ФЕШИН, член-корреспондент АН СССР М. Г. ВОРОНКОВ

МЕХАНИЗМ α -ЭФФЕКТА В α -КАРБОФУНКЦИОНАЛЬНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ ЭЛЕМЕНТОВ IVБ ГРУППЫ

Накопившийся к настоящему времени экспериментальный материал по реакционной способности органических соединений мезоидов (кремния, германия и олова), а также данные их исследования с помощью и.-к., я.м.р., я.к.р. спектроскопии и других физических методов позволяют прий-

ти к заключению, что соединения, содержащие группировку $\stackrel{}{>}$ $M - \stackrel{|}{C} - X$

(M = Si, Ge, Sn; X = галоген, N. O, S и т. д.), во многих случаях ведут себя аномально. Эта аномалия объяснена внутримолекулярной координацией между атомами <math>M и X (« α -эффект» ($^{1-5}$)).

Так, например, в Cl_3SnCH_2Cl и X_3GeCH_2Y (X, Y = галоген) валентные колебания связей C-H лежат в области, характерной для трехчленного цикла (6). В п.-к. спектрах α -аминометилсиланов и -силоксанов совершенно не наблюдается поглощения, характерного для свободных групп NH_2 пли NH (7). На наличие внутримолекулярного координационного взаимодействия $N \leftarrow SN$ указывает замедление инверсии азота в триалкил-(N-азиридинометил)-станианах, так как для изменения конфигурации, кроме преоделения инверсионного барьера, необходим разрыв связи $Sn \leftarrow N$ (6) и т. д.

Идея координационного взаимодействия между атомами М и Х в переходиом состоянии неодпократно привлекалась для объяснения апомальной реакционной способности органических соединений элементов IVБ группы типа R₂MCH₂X. Так, например, относительно высокая реакционная способность триметия-(хлорметия)-сплана по отношению к попу J- объяснялась стабилизацией переходного состояния за счет одновременного взаимодействия приближающегося нона пода с атомом углерода и вакантными 3d-орбиталями атома кремния (8, 9). Уходящий же поп хлора таким же образом взаимодействует с атомами Si н C (9, 10):

$$(CH_3)_3SiCH_2CI + J$$
 \longrightarrow $(CH_3)_3Si$ \longrightarrow $(CH_2)_3SiCH_2J + CI$

Аналогичный механизм постулировался для реакции триметил-(хлорметил)-силана с нопом SCN^- (10) и $C_2H_5O^-$ (10) и т. д.

Достаточно убедительным доказательством внутримолекулярной коорданации между атомами M и X в молекулах, содержащих группировку $\stackrel{\downarrow}{-}$ M-C-X, могут служить реакции их перегруппировки, протекающие с распамлением связи M-C и миграцией заместителя X от атома услерода и атому M ($^{(11-13)}$):

$$-\stackrel{X}{\underset{-}{\bigvee}} - X + : C .$$

Превращения по этой схеме свидетельствуют, что в определенных случаях связь Х · · · М может оказаться даже прочнее, чем связь М—С. Реакции такого типа наблюдаются, например, при пиролизе некоторых α-хлорили α -фторалкилсиланов и т. д. ($^{11-13}$).

Во всех рассмотренных выше (и многих других подобных им) случаях предполагается, что в координационном взаимодействии принимают участие вакантные д-орбитали атома М и неподеленная пара электронов атома Х. При этом каким-либо экспериментальные доказательства участия во взаимодействии между атомами М и Х именно неподеленной пары электронов атома Х в литературе отсутствуют.

Если такое взаимодействие действительно существует, можно ожидать,

что в молекулах, содержащих группировку $\stackrel{!}{>}$ $M-\stackrel{!}{C}-X$, угол M-C-Xдолжен быть меньше тетраэдрического, а невалентное расстояние М ... Х приближаться к сумме ковалентных радиусов этих атомов. Однако установленная с помощью микроволновой спектроскопии геометрия молекулы H₃SiCH₂Cl (14) и электронографическое исследование молекулы Cl₃SnCH₂Cl в газовой фазе (15) нельзя считать подтверждением этого предположения. Угол Si—C—Cl в молекуле H₃SiCH₂Cl равен 109,3° (14), найденное по длипам связей Si-C и C-Cl и углу Si-C-Cl невалентное расстояние Si···Cl (3,000 Å) значительно больше суммы ковалентных радиусов атомов Si и Cl. Угол Sn—C—Cl в молекуле Cl₂SnCH₂Cl даже несколько больше тетраэдрического (113°), а расстояние Sn···Cl (3,31 Å) превышает сумму ковалентных (2,39 Å), но меньше суммы ван-дер-ваальсовых (3,95 Å) радиусов атомов Sn и Cl (15). Хотя эти данные и не подтверждают существование внутримолекулярной координации между атомами М и Х, но они и не исключают его, так как полученные значения невалентных расстояний М · · · Х значительно меньше суммы ван-дер-ваальсовых радиусов М и Х.

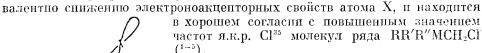
Исследование соединений ряда RR'R"MCH2Cl (M = Si, Ge, Sn; R, R' и R'' – любые заместители, как электроноакцепторные, так и электронодонорные) методом я.к.р. при 77° К подтверждает наличие внутримолекулярного взаимодействия между атомами $\dot{\mathbf{M}}$ и \mathbf{Cl} (1-5). Частоты я.к.р. \mathbf{Cl}^{35} элементоорганических соединений этого ряда оказываются значительно выше частот я.к.р. аналогично построенных органических соединений (М=С), в то время как значения электроотрицательности атомов М и индукционных констант заместителей RR'R"М требуют обратного соотношения частот я.к.р. Завышенные значения частот я.к.р. изоструктурных соединений с M = Si, Ge, Sn по сравнению с их органическими аналогами (M=C) обусловлены понижением числа p-электронов на p_z -орбитали атома хлора (N_z) , которые, по-видимому, переходят на вакантные d-орбитали атома М. В случае же перехода на них неподеленных электронных пар атома хлора (как обычно принято считать), находящихся на p_x - или p_y -орбиталях, частота я.к.р. Cl^{35} понижалась бы, так как она является функцией числа несбалансированных электронов:

$$\mathbf{v} = f\left(\frac{N_x + N_u}{2} - N_z\right),\,$$

где N_x , N_y и N_z — число p-электронов соответственно на p_x -, p_y - и p_z -орбиталях атома хлора.

Таким образом, координационное взаимодействие между атомами М и X в молекулах, содержащих группировку $\stackrel{}{\longrightarrow} M-C-X$ (« α -эффект»), осу-

ществляется за счет перехода на вакантные d-орбитали атома ${\bf M}$ (например, d_{xu} -орбитали) σ -электронов атома X, участвующих в связи C-X. В этом случае образуется трехцентровая связь «замкнутого» типа, обусловленная перекрыванием p_{σ} -орбиталей атома X, sp^3 -гибридизованных


орбиталей углерода и вакантных d-орбиталей (типа d_{xy} -орбиталей) атома М. Оси этих орбиталей направлены внутрь разностороннего треуголь-

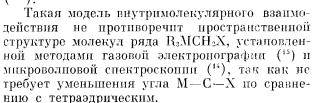

ника, образованного атомами М, С и Х.

Рис. 1

На возможность образования трехцентровой связи за счет обобществления одной нары электронов тремя атомными ядрами указывал еще Лонге-Хиггинс (16). Наличие трехцентровой связи предполагалось в диборане B_2H_6 (17). Существованием такой связи можно объяснить устойчивость нона H_3^+ и т. д. (18).

В молекулах, содержащих группировку $\stackrel{}{=}$ $M-\stackrel{}{C}-X$, связь C-X, по-видимому, поляризуется под действием атома M и изгибается. В результате степень перекрывания орбиталей атомов C и X уменьшается, что экви-

Таким образом, аномальные свойства соеди-

нений, содержащих группировку \searrow M-C-X и, в частности, повышение частоты я.к.р. Cl^{25} молекул подобного типа при M=Si, Ge, Sn и X=Cl, по сравнению с органическими аналогами (M=C) могут быть обусловлены двумя факторами: 1) переходом p_{σ} -электронов атома X на вакантные d-орбитали атома M и 2) поляризацией связи C-X под влиянием атома M. Оба эти фактора, очевидно, необходимы для образования трехцентровой связи и вызывают понижение σ -электронной плотности на атоме X.

Рассмотренные выше экспериментальные данные и предложенный механизм α-эффекта позволяют сделать вывод, что энергия взаимодействия между атомами М и X определяется степенью перекрывания участвующих в образовании трехцентровой связи атомных орбиталей, которая, в свою

очередь, зависит: 1) от геометрии фрагмента $\stackrel{}{\longrightarrow}$ $M-\dot{C}-X$, 2) от способности вакантных d-орбиталей атома M участвовать в координации и 3) от типа атомных орбиталей, образующих связь C-X.

Образование трехцептровой связи, по-видимому, возможно и в группировках — МСН₃, где предполагалось существование о,о-сопряжения.

Считалось, что сверхсопряжение между связями M-C и C-H может проявляться в молекулах ряда $(CH_3)_4M$ (M=C, Si, Ge, Sn, Pb) (19). О гинерконъюгации, особенно отчетливо проявляющейся при $R=CH_3$, говорит изменение экранирования протона, связанного с атомом креминя, в спектрах и.м.р. соединений рядов R_3SnH , R_2SnH_2 и $RSnH_3$ (R=алкил) и частот v_{Sn-H} в их и-к. спектрах (20). Сверхсопряжение предполагалось также в молекулах ряда RR'R''SiH на основании их и.-к. спектров и спектров п.м.р. Эти данные показывают, что способность к σ , σ -сопряжению связей C-H метильных групп значительно сильнее, чем других алкильных заместителей (21). Это согласуется со спектрами я.к.р. Cl^{35} органических соединений рядов RCl, RCOCl и n- $RC_6H_4CH_2Cl$ (22), которые указывают на участие в сверхсопряжении только метильных групп. σ , σ -Сопряжение связи C-Cl со связями C-H групи CH_2 или CH, если и имеет место, то прояв-

ляется очець слабо (²²). Обпаруженное экспериментально участие в сверхсопряжении групи СН₃, а не СН₂ или СН, можно объяснить образованием дополнительной трехцентровой связи между атомами водорода группы СН₃, обусловленной перекрыванием трех *s*-орбиталей, как предполагалось в случае пона Н₃+ (¹⁸).

Наличне эффекта σ , σ -сопряжения постулировалось также в молекулах ряда $XC_6H_4(CH_3)_2SiH$ (24). Определение констант σ групп GeH_3 и SnH_3 на основании частот валентных колебаний связи Si-H молекул H_3SiSnH_3 показывает, что эти группы имеют электроноакцепторный характер, несмотря на меньшую электроотрицательность атомов Ge и Sn по сравнению Ge атомом углерода. Это объяснено эффектом Ge, Ge-сопряжения.

$$H_3 = Si - M = EH_3 \quad (M = Ge, Sn)^{(21)}$$

Сверхсопряжение предполагалось и в других молекулах, содержащих груп-

пировки MH_3 (M = C, Si) (21).

Согласно существующим представлениям, σ , σ -сопряжение в молекулах ряда RR'R'MM'H $_3$ (M = Si, Ge, Sn; M' = C, Si, Ge, Sn) обусловлено смещением σ -электронов связей M'—H на соседнюю связь М—М'. Однако, на наш взгляд, все случан аномального поведения соединений, содержащих группировку \sum М—М'Н $_3$, могут быть объяснены (как и в случае молекул

с группировкой $\rightarrow M - \stackrel{1}{C} - X$) образованием трехцентровой связи за счет

перекрывання трехцентровой орбитали атомов водорода в группе $M'H_3$, sp^3 -гибридизованных орбиталей атома M' и вакантных d-орбиталей атома M. Смещение же электронов связей M'—H на соседнюю связь M—M' не по индукционному механизму, по-видимому, возможно только при значительном уменьшении угла H—M'—M по сравнению с тетраэдрическим, что мало вероятно.

Пркутский институт органической химии Сибирского отделения Академии паук СССР Поступи**ло** 21 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. П. Фешип, Кандидатская диссертация, Рига, 1970. ² М. Г. Воронков, В. П. Фешин, V Международный конгресс по металлоорганической химии, М., 1971, Тез. докладов, 1, 31 (1971). ³ М. Г. Воронков, В. П. Фешин, Тез. докл. Всесоюзн. совещ. Влияние высших атомных орбиталей на физические и химические собйства соединений непереходных элементов, Рига, 1971, стр. 87. ⁴ М. Г. Воронков, В. П. Фешин и др., ЖОХ, 41, 2211 (1971). ⁵ М. G. Voronkov, V. Р. Гезьів, in: Determination of Organic Structures by Physical Methods, 5, N. Y., 1972. ⁶ Р. Г. Костяновский, А. К. Прокофьев, ДАН, 164, 4054 (1965). ⁷ J. Е. Noll, В. F. Daubert, J. L. Speier, J. Am. Chem. Soc., 73, 3871 (1951). ⁸ С. Еабогп, J. С. Jeffrey, J. Chem. Soc., 1954, 4266. ⁹ G. D. Cooper, M. Prober, J. Am. Chem. Soc., 76, 3943 (1954). ¹⁰ R. W. Bott, C. Eaborn, T. W. Swaddle, J. Organomet. Chem., 5, 233 (1966). ¹¹ С. Еабогп, R. W. Bott, in: Organometallic Compounds of the Group IV Elements, N. Y., 1968. ¹² R. W. Bott, Organomet. Chem. Rev. B, 7, 175 (1971). ¹³ M. J. Newlands, Organomet. Chem. Rev., B. 7, 1 (1971). ¹⁴ R. H. Schwendeman, G. D. Jacobs, J. Chem. Phys., 36, 1251 (1962). ¹⁵ И. А. Ронова, М. А. Сипинына и др., ЖСХ, 13, 15 (1972). ¹⁶ H. C. Longuet-Higgins, J. Chim. Phys., 46, 268 (1949). ¹⁷ W. H. Eberhardt, B. Grawford, W. N. Lipscomb, J. Chem. Phys., 22, 989 (1954). ¹⁸ М. Дьюар, Теория молекулярных орбиталей в органической химии, М., 1972. ¹⁹ А. L. Allred, E. G. Rochov, J. Inorg. and Nucl. Chem., 5, 269 (1958). ²⁰ Y. Kawasaki, K. Kawakami, T. Tanaka, Bull. Chem. Soc. Japan, 38, 1102 (1965). ²¹ A. H. Егорочкий, Докторская диссертация, Горький, 1971. ²² М. Г. Воронков, В. П. Фешин, Э. П. Попова, Теоретич. и экси, хим., 7, 40 (1974).