УДК 66.095.264:678.13:678.762.2.136.23

ХИМИЯ

В. Л. ШМОНИНА, Н. Н. СТЕФАНОВСКАЯ, Е. И. ТИНЯКОВА, академик Б. А. ДОЛГОПЛОСК

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОЦЕССА СОПОЛИМЕРИЗАЦИИ БУТАДИЕНА С ИЗОПРЕНОМ ПОД ВЛИЯНИЕМ ТРИС-л-АЛЛИЛХРОМА, НАНЕСЕННОГО НА АЛЮМОСИЛИКАТ

Ранее было показано, что трис- π -аллилхром, нанесенный на активированный прогревом в вакууме алюмосиликат, является катализатором 1,4-транс-полимеризации бутадиена и изопрена (¹). Трис- π -аллилхром реагирует с гидроксильными группами алюмосиликата с выделением пропилена:

$$-\mathrm{Si-OH} + \mathbf{C}r(C_3H_5)_3 \rightarrow -\mathrm{Si-OCr}(C_3H_5)_2 + C_3H_6.$$
(A)

Образующееся соединение А и является активным центром полимеризапии.

Настоящая работа посвящена изучению процесса сополимеризации буталиена и изопрена под влиянием указанной системы.

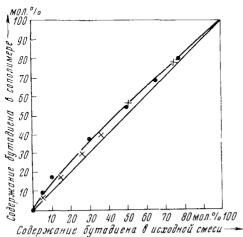
Сополимеризацию проводили в растворе толуола при 70° С. Загрузку компонентов системы осуществляли следующим образом. Навеску алюмосиликата прогревали в ампуле в вакууме при 350° в течение часа, охлаждали и в токе аргона вводили раствор трис- π -аллилхрома. Содержимое выдерживали 1 час с постепенным повышением температуры от -20° до комнатной, после чего выделившийся пропилен и растворитель удалялись отконденсацией в вакууме. Далее вводили свежую порцию толуола, буталиен и изопрен. Запаянную ампулу помещали в термостат.

Концентрация хрома на носителе составляла 1,65 вес. %, концентрация $Cr(C_3H_5)_3-0,15$ мол. % к сумме мономеров. Состав сополимеров рассчитывался из данных о ненасыщенности полимеров, определенной по реакции с нодхлором (иодное число полибутадиена 470, иодное число полинзопрена 369).

Экспериментальные данные, характеризующие зависимость состава сополимера от состава исходной смеси, приведены на рис. 1.

Состав сополимера близок к составу исходной смеси. Рассчитанные по методу Файнемана и Росса (2) константы сополимеризации бутадиена (M_1) и изопрена (M_2) оказались соответственно равными $r_1=1,06,\ r_2=0,80$. В сополимерах сохраняется транс-1,4-построение мономерных звеньев $96-97\,\%$ транс-звеньев в бутадиеновой части, $94\,\%$ транс-звеньев в изопреновой части.

На рис. 1 приведены также данные по составу сополимеров бутадиена с изопреном, полученных под влиянием окиснохромового катализатора (окись хрома на алюмосиликате). Рассчитанные константы сополимеризации этих мономеров (для бутадиена $r_1=1,04$, для изопрена $r_2=0,76$) имеют практически те же значения, что и при полимеризации под влиянием трис- π -аллилхрома, нанесенного на алюмосиликат.


В сополимерах бутадиена с изопрепом, полученных под влиянием хромокисного катализатора, как показано в (3), мономерные звенья имеют 1,4-транс-структуру (98—99% транс-звеньев в бутадиеновой части цепи, 97% транс-звеньев в изопреновой части цепи), т. е. структуру, характерную для гомополимеров (4).

Идентичность констант сополимеризации бутадиена с изопреном и микроструктуры сополимеров, получающихся под влиянием трис-л-аллилхрома, нанесенного на алюмосиликат, и хромокисного катализатора указывают на общность механизма их действия.

1.
$$Cr^{s+} \rightarrow Cr^{s+} \rightarrow Cr^{s+}$$
.

2.
$$Cr^{+2} + CH_2 = C - CH = CH_2$$
 $CH_2 - C = CH - CH_2$ CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_6

Предполагаемая схема предусматривает, что первой стадией процесса является восстановление Cr^{6+} до Cr^{3+} и Cr^{2+} . Взаимодействие Cr^{2+} с изо-

-60 -70 -80 -90 -100 0 10 20 30 40 50 60 70 80 90 100

Рис. 1. Зависимость состава сополимеров бутадиена с изопреном от состава исходной смеси. Температура полимеризации 70° С. Крест — трис-т-аллилхром на алюмосиликате; точка — окись хрома на алюмосиликате

Рис. 2. Фазовое состояние, температуры стеклования (T_g) транс-сополимеров бутадиена с изопреном в зависимости от их состава

преном (бутадиеном) приводит к образованию ион-радикала подобно тому, как это имеет место в случае полимеризации под влиянием дефектных солей переходных металлов (5).

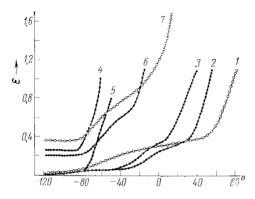


Рис. 3. Зависимость деформации от температуры для транс-сополимеров бутадиена с изопреном, сиятая на приборе Марея при постоянной нагрузке 2,2 кг/см² по методике для некристаллизующихся полимеров. Содержание бутадиена в сополимере (мол.%): $I-85;\ 2-75;\ 3-67;\ 4-50;\ 5-30;\ 6-25;\ 7-75.\ I,\ 3,\ 5-сополимеризация на хромокисном кагализаторе; <math>4,\ 6,\ 7-$ сополимеризация под влиянием $\mathrm{Cr}(\mathrm{C_3H_5})_3$ на алюмосиликате

Были изучены некоторые свойства сополимеров бутадиена с изопреном, полученных под влиянием $Cr(C_3H_5)_3$, нанесенного на алюмосиликат, и CrO_3 на том же носителе.

На рис. 2 приведены зависимости фазового состояния и температурстеклования сополимеров от их составов. Температуры плавления кристаллических сополимеров были определены термографически, температуры стеклования аморфных полимеров определялись на приборе Марея по методике, принятой для кристаллизующихся полимеров. Области A соответствуют кристаллическому состоянию сополимеров. По мере увеличения содержания изопреновых звеньев температура плавления сополимеров снижается и при достижении 30 мол. % полимер полностью аморфизируется (область A_1). Аналогичный эффект достигается при введении в цень транс-полиизопрена 7% транс-бутадиеновых звеньев (область A_2). В области B все получаемые сополимеры находятся в аморфном состоянии. В связи со статистическим распределением звеньев и сохранением микроструктуры при сополимеризации температура стеклования находится в линейной зависимости от состава. Однако аморфные сополимеры, содержащие избыток бутадиена (или изопрена) обнаруживают склонность к кристаллизации при пизких температурах в условиях деформации, что иллюстрируется данными рис. 3.

Институт пефтехимического синтеза им. А. В. Топчиева Академии наук СССР Москва Поступило 28 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. Л. Шмонина, Н. Н. Стефановская и др. Высокомолек. соед., **Б12**, 566 (1970). ² М. Fineman, S. D. Ross, J. Polymer Sci., **5**, 269 (1950). ³ В. Л. Шмонина, Ф. Е. Купермани др., Высокомолек. соед., **A9**, 1602 (1967). ⁴ Е. И. Тинякова, Б. А. Долгоплоски др., ДАН, 124, 595 (1959). ⁵ И. Я. Островская, К. Л. Маковецкий и др., ДАН, 197, 1344 (1971).