УДК 66.012.1

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Член-корреспондент АН СССР В. В. КАФАРОВ, И. Н. ДОРОХОВ, А. Н. СПИРИДОНОВ

НОВЫЙ МЕТОД ОЦЕНКИ ПАРАМЕТРОВ СОСТОЯНИЯ ПРОЦЕССОВ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Задача оценки переменных состояния химико-технологического процесса, к которым можно отнести температуру, давление, составы фаз, расходы жидких и газообразных сред и т.д., состоит в том, чтобы по ноказаниям измерительных приборов, функционирующих в условиях случайных помех, восстановить значения переменных состояния системы, наиболее близкие в смысле заданного критерпя к истинным значениям. Важность решения этой задачи имеет три аспекта: 1) открывается возможность получать непрерывно информацию о тех переменных состояниях нелинейного объекта, непосредственное измерение которых невозможно по технологическим причинам (например, концентрации промежуточных всществ, параметры состояния межфазной поверхности, доля свободных активных мест катализатора и т.п.); 2) реализация непрерывной оцепки переменных состояния создает предпосылки для прямого цифрового оптимального управления нелинейным процессом; 3) решение задачи оценки решает проблему непрерывной адаптации нелинейной математической модели к моделируемому процессу в условиях случайных помех и дрейфа технологических характеристик последнего, что весьма существенно при решении задач статической и динамической оптимизации.

Пусть химико-технологический процесс, протекающий в условиях случайных помех V, характеризуется n-мерным вектором состояний $\mathbf{x} = (x_1, x_2, \ldots, x_n)^T$, r-мерным вектором управлений $\mathbf{u} = (u_1, u_2, \ldots, u_r)^T$, m-мерным вектором наблюдений $\mathbf{y} = (y_1, y_2, \ldots, y_m)^T$ (по числу измерительных приборов), причем на показания измерительных приборов накладывается шум W. В соответствии с современной теорией динамических систем математическое описание процесса представляется в виде системы нелиней-

ных дифференциальных уравнений:

$$\mathbf{x} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) + \mathbf{V},$$

$$y = g(\mathbf{x}) + \mathbf{W},$$
(1)

где f, g — в общем случае нелинейные вектор-функции, вид которых определяется спецификой процессов; V, W — некоррелированные между со-

бой случайные процессы (центрированный Гауссов белый шум).

Постановка задачи. При заданном начальном векторе состояния $\mathbf{x}(t_0) = \mathbf{x}_0$ и значениях вектора наблюдения у в дискретные моменты времени $\mathbf{y}(t_0), \mathbf{y}(t_1), \dots, \mathbf{y}(t_N)$ требуется получить оптимальную в смысле среднеквадратичного критерия оценку \mathbf{x} вектора состояния \mathbf{x} в указанные моменты времени t_0, t_1, \dots, t_N . Для решения поставленной задачи предлагается использовать так называемый расширенный дискретный фильтр Калмана (1). С этой целью перейдем от дифференциальной формы системы (1) к соответствующей нелинейной конечно-разностной системе:

$$\mathbf{x}_{h+1} = \mathbf{f}_h(\mathbf{x}_h, \mathbf{u}_h) + \mathbf{V}_h,$$

$$\mathbf{y}_h = \mathbf{g}_h(\mathbf{x}_h) + \mathbf{W}_h,$$
(2)

где $\mathbf{x}_k = \mathbf{x}(t_k)$, $\mathbf{y}_k = \mathbf{y}(t_k)$, $\mathbf{u}_k = \mathbf{u}(t_k)$, $\mathbf{V}_k = \mathbf{V}(t_k)$, $\mathbf{W}_k = \mathbf{W}(t_k)$, а индекс k пробегает значения $k = 0, 1, 2, \ldots, N$. Обозначим через $\mathbf{x}_{k/k}$ оценку вектора \mathbf{x}_k , полученную на основе наблюдений в течение предыдущего промежутка времени $[t_0, t_k]$. Запишем в принятых обозначениях критерий оптимальности, начальные условия, рекуррентные соотношения прогнозирования и коррекции, определяющие алгоритм решения задачи оценки. Критерий оптимальности:

$$\begin{split} H &= \frac{1}{2} (\mathbf{x}_k - \hat{\mathbf{x}}_{k/k})^T \mathbf{L}_{k/k}^{-1} (\mathbf{x}_k - \hat{\mathbf{x}}_{k/k}) + \\ &+ \frac{1}{2} \sum_{i=0}^{k-1} (\mathbf{y}_{i+1} - \mathbf{G}_{i+1} \hat{\mathbf{x}}_{i+1/i})^T \mathbf{M}_{i+1}^{-1} (\mathbf{y}_{i+1} - \mathbf{G}_{i+1} \hat{\mathbf{x}}_{i+1/i}); \end{split}$$

соотношения прогнозирования: $\hat{\mathbf{x}}_{k/k-1} = \mathbf{f}_{k-1}(\hat{\mathbf{x}}_{k-1/k-1}, \mathbf{u}_{k-1}), \hat{\mathbf{y}}_{k/k-1} = \mathbf{g}_k(\hat{\mathbf{x}}_{k/k-1}),$ $\mathbf{L}_{k/k-1} = \mathbf{F}_{k-1}\mathbf{L}_{k-1/k-1}\mathbf{F}_{k-1}^T + \mathbf{S}_{k-1};$ соотношения [коррекции: $\hat{\mathbf{x}}_{k/k} = \hat{\mathbf{x}}_{k/k-1} + \mathbf{R}_k (\mathbf{y}_k - \hat{\mathbf{y}}_{k/k-1}), \mathbf{L}_{k/k} = (I - \mathbf{R}_k \mathbf{G}_k) \mathbf{L}_{k/k-1};$ начальные условия: $\hat{\mathbf{x}}_{0/-1} = E[\mathbf{x}_0] = \hat{\mathbf{x}}_0, \mathbf{L}_{0/-1} = E[(\mathbf{x}_0 - \hat{\mathbf{x}}_0)(\mathbf{x}_0 - \hat{\mathbf{x}}_0)^T],$ где $\mathbf{F}_{k-1} = (\partial \mathbf{f}_{k-1}/\partial \mathbf{x}_{k-1})|_{\hat{\mathbf{x}}_{k-1/k-1}};$ $\mathbf{G}_k = (\partial \mathbf{g}_k/\partial \mathbf{x}_k)|_{\hat{\mathbf{x}}_{k/k}};$

 $\mathbf{L}_{k/k}$ — матрица ковариаций ошибок оценки; \mathbf{S}_k , \mathbf{M}_k — матрицы ковариаций случайных процессов \mathbf{V}_k и \mathbf{W}_k соответственно; $E[\]$ — оператор вычисления математического ожидания; I — единичная матрица; T — знак транспонирования; \mathbf{R}_k — матрица весовых коэффициентов, определяемая формулой: $\mathbf{R}_k = \mathbf{L}_{k/k-1}\mathbf{G}_k^T(\mathbf{G}_k\mathbf{L}_{k/k-1}\mathbf{G}_k^T+\mathbf{M}_k)^{-1}$. На основе приведенных соотношений разработан общий алгоритм и отлажена программа решения задачи оценки на ЦВМ «Минск-22». Блок-схема алгоритма показана на рис. 1.

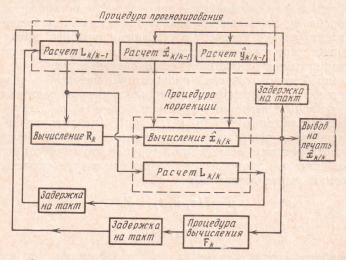


Рис. 1. Блок-схема алгоритма решения задачи оценки

В качестве примера рассмотрим задачу оценки переменных состояния проточного реактора с механическим перемешиванием и рубашкой охлаждения, в котором протекает необратимая экзотермическая реакция метаксилирования ортонитрохлорбензола, имеющая второй порядок при избытке СН₃ОН. Уравнения математической модели реактора имеют вид:

$$V_{r} \frac{dC_{A}}{dt} = v\left(C_{A_{0}} - C_{A}\right) - V_{r}C_{A}^{2}p \exp\left(-\frac{E}{RT}\right),$$

$$\rho_{r}V_{r}C_{pr} \frac{dT}{dt} = \rho_{r}vC_{pr}\left(T_{0} - T\right) - hA\left(T - T_{x}\right) + \Delta HpV_{r}C_{A}^{2}\exp\left(-\frac{E}{RT}\right),$$

$$\rho_{x}V_{x}C_{px} \frac{dT}{dt} = \rho_{x}v_{x}C_{px}\left(T_{x_{0}} - T_{x}\right) + hA\left(T - T_{x}\right),$$
(3)

где C_A — концентрация ортонитрохлорбензола; p — предэкспоненциальный множитель; E,R — энергия активации и газовая постоянная; ΔH — тепловой эффект реакции; V,T,v,ρ,C_p — объем, температура, объемный расход, плотность и теплоемкость соответственно; r,x,0 индексы, относящиеся к реакционной массе, хладоагенту и входному потоку соответственно; h — коэффициент теплопередачи; A — площадь теплообмена; t — время.

В качестве переменных состояния примем: $x_1 = (C_A - C_{Ae}) / C_{Ae}$, $x_2 = (T - T_e) / T_e$, $x_3 = (T_x - T_{xe}) / T_{xe}$; а к переменным управления отнесем $u_1 = (C_{A0} - C_{Ae}) / C_{Ae}$, $u_2 = (T_0 - T_e) / T_e$, $u_3 = (T_{x0} - T_{xe}) / T_{xe}$

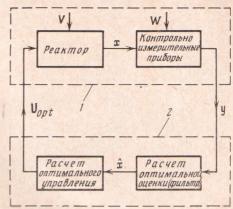


Рис. 2. Блок-схема работы фильтра в замкнутом контуре прямого цифрового управления процессом

где индекс e относится к установившемуся состоянию процесса. Учитывая введенные переменные и принимая обозначения для производных $\dot{x} = dx_i/d\tau$, $i=1,2,3;~\tau=\beta t$, где β — масштабный множитель, мы приведем уравнения (3) к каноническому виду $\mathbf{x} = \mathbf{f}(\mathbf{x},\mathbf{u})$ или в координатной записи получим:

$$\dot{x}_{1} = -\alpha_{1}x_{1} - \alpha_{2}(1+x_{1})^{2} \exp\left(\frac{ax_{2}}{1+x_{2}}\right) + \alpha_{1}u_{1},
\dot{x}_{2} = \alpha_{4}x_{3} - (\alpha_{1}+\alpha_{3})x_{2} + \alpha_{6}(1+x_{1})^{2} \exp\left(\frac{ax_{2}}{1+x_{2}}\right) - \alpha_{5} + \alpha_{1}u_{2},
\dot{x}_{3} = \alpha_{8}x_{2} - (\alpha_{7}+\alpha_{9})x_{3} + \alpha_{10} + \alpha_{7}u_{3},$$
(4)

где

$$a = E/RT_e, \ \ lpha_1 = v/V_{_7}eta, \ \ lpha_2 = rac{pC_{Ae}}{eta} \exp{(-a)}, \ \ lpha_3 = rac{hA}{
ho_r V_r C_{pr}eta}, \ \ lpha_4 = lpha_3 T_{xe}/T_e, \ \ lpha_5 = lpha_3 (T_e - T_{xe})/T_e, \ \ lpha_6 = rac{\Delta H p C_{Ae}^2 \exp{(-a)}}{eta
ho_r C_{pr} T_e}, \ \ lpha_7 = v_x/V_xeta, \ \ lpha_8 = lpha_9 T_e/T_{xe}, \ \ lpha_9 = hA/
ho_x V_x C_{px}eta, \ \ lpha_{10} = lpha_9 (T_e - T_{xe})/T_{xe}.$$

Допустим, что для рассматриваемого реактора решена задача синтеза оптимального управления **u**opt, которое реализуется с помощью управляющей вычислительной машины (УВМ), так что реактор функционирует в замкнутом контуре прямого цифрового управления процессом (рис. 2). Для непрерывного вычисления на УВМ вектора оптимального управления **u**opt необходимо располагать информацией о текущих значениях переменных состояния процесса: приведенной концентрации x_i и двух приведенных температур — в реакторе x_2 и хладоагента в рубашке охлаждения x_3 . Очевидно, регистрация переменных x_2 и x_3 не представляет труда, тогда как непрерывное измерение концентрации x_1 может быть сопряжено со значительными технологическими трудностями. Возцикает задача получения оптимальной оценки переменной x_1 , а также x_2 и x_3 в условиях неполного наблюдения: измеряются только переменные x_2 и x_3 , причем как сам реакторный процесс, так и измерительные приборы работают в условиях случайных помех. Уравнения наблюдения для данной динамической системы примут вид: y = Gx + W, где $G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ — матрида паблюдений, $\mathbf{y} = (y_2, y_3)^T$, $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{W} = (W_2, W_3)^T$.

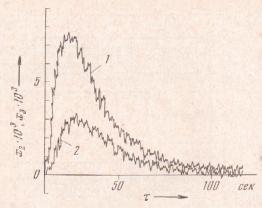


Рис. 3. Кривые наблюдения переменных состояния: $1-x_2$, $2-x_3$

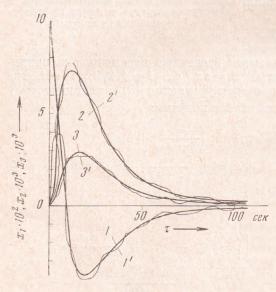


Рис. 4. Результаты расчета задачи оценки: 1-но-измерительной аппаратуры x_1 ; $1'-x_1$; $2-x_2$; $2'-x_2$; $3-x_3$; $3'-x_3$

Решение задачи на ЦВМ «Минск-22» проводилось следующих исходных данных: $\beta = 1/240$, $\alpha = 15,35$, $\alpha_1 = 0,0461$, $\alpha_2 = 0.089$ $\alpha_3 = 0.0215$. = 0.0188, $\alpha_5 = 0.0027$ $\alpha_6 =$ =0.00784, $\alpha_7=0.206$, $\alpha_8=0.14105$, $\alpha_9 = 0.1237, \alpha_{10} = 0.0178, u_1 =$ $=1,93, u_2=-0,111, u_3=-0,0865,$ $\mathbf{M}_h = \operatorname{diag}(0.01 \ 0.01), \ \mathbf{S}_h = \operatorname{diag}(1.10^{-4} \ 1.10^{-4} \ 1.10^{-4}), \ \mathbf{L}_{0/-1} =$ = diag (0,01 0,01 0,01). При начальном условии $x_1 = 0,1$; $x_2 =$ $= x_3 = 0$ кривые наблюдения переменных x_2, x_3 моделировались путем численного интегрирования системы (4) и наложения экспериментального шума с помощью генератора случайных чисел (рис. 3). При этом допускалось, что случайные помехи могут искажать полезные сигналы по температурам T и T_x в пределах 10%.

Результирующие кривые оценки показаны на рис. 4. Видно, что всюду, кроме начального участка, точность оценки ненаблюдаемой переменной x_1 практически не уступает точности оценки наблюдаемых переменных x_2, x_3 . Интересно отметить, что точность оценки переменных состояния практически не изменялась при вариации величины случайных ошибок в показаниях контроль-

от 3 до 12%; значений элементов матриц ковариации

ошибок \mathbf{M}_h и $\mathbf{L}_{0/-1}$ (в пределах 10%) и начальных условий (в пределах 10%). Это свидетельствует об эффективности алгоритма фильтрации при решении задач оценки в условиях ошибок измерения параметров процесса. В заключение отметим, что изложенный метод не требует точного математического описания процесса. Неопределенность математической модели задается матрицей S ковариаций тума V. Задача адаптации математической модели процессу является частным случаем сформулированной задачи оценки и будет рассмотрена в отдельной работе.

Московский химико-технологический институт им. Д. И. Менделеева

Поступило 22 I 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. E. Kalman, Trans. ASME, J. Basic Eng., 35-45, March 1960.