КРИСТАЛЛОГРАФИЯ

УДК 548.73

Ю. А. ГОРБУНОВ, Б. А. МАКСИМОВ, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА Na, Sc-ГЕРМАНАТА Na $_4$ Sc $_2$ Ge $_4$ O $_{13}$

Бесцветные, прозрачные кристаллы нового, ромбического (a=14,30 Å. b=5,46 Å, c=14,65 Å) Na, Sc-германата * получены в гидротермальной лаборатории Института кристаллографии при изучении кристаллизации в системе $\mathrm{Na_2O-Sc_2O_3-GeO_2-H_2O}$. Химическая формула $\mathrm{Na_4Sc_2[Ge_4O_{13}]-yctahobacha}$ в результате полного рентгеноструктурного анализа.

Трехмерный экспериментальный набор интенсивностей (593) дали развертки слоевых линий $h0l-h5l,\ hk0$ (рентгенгоннометр Вейсенберга, экви-

паклонная съемка, Мо K_{lpha} -излучение, $\max \frac{\sin \theta}{\lambda} = 0.85$, оценка по $2^{\%}$ -шкале

марок почернения) получен от кристалла, обточенного в сферу $\emptyset = 0,25$ мм. При стандартном выделении $|F_{hkl}|$ учитывались кинематический и поляризационный факторы. Все расчеты выполнены по комплексу программ «Кристалл» (1). Поправка на поглощение на ранней стадии исследования не вводилась, так как первоначально не было известно количественное от-

ношение атомных рассеятелей.

Соответствующая закономерным погасаниям рентгеновская группа mmm Pna-включает пве федоровские $D_{2h}^{16} = Pnam$ и $C_{2h}^{9} = Pna$ 2. Предпочтение гемиморфной было отдано с большой степенью уверенности на стадии анализа трехмерной патерсоновской функции с использованием предположенных в (2, 3) тестов и подтверждено окончательным вариантом структурной модели. Из функции Патерсона в рамках ацентричной группы было выделено шесть четырехкратных комплексов. Учет относительных мощностей межатомных взаимодействий позволил четыре комплекса закрепить за Ge (Z=32), а два за Sc (Z=21). Остальные атомы (их количество и координаты) локализованы из серии синтезов электронных плотностей. Для Na и O первоначально допускалась одинаковая рассеивающая способность ($\approx f_0$); их дифференциация уверенно выполнена при анализе межатомных расстояний катион — анион. Заключительный R_{hkl} (по синтезам $\rho(x, y, z)$) был 0,16. Уточнение позиционных параметров и введение общей тепловой поправки B=-0.22 Å снизило R_{hhl} до 0.082. Обращение к индивидуальным тепловым множителям не приводило к существенному изменению R_{hhl} (0,079), Объективной причиной отрицательного значения $B_{\text{обш}}$ можно считать неучет поглощения ($\mu R = 3.4$).

Заключительные координаты базисных атомов (69 параметров, R_{hhl} = 0,082) приведены в табл. 1. Рассчитанный по координатам табл. 1 последний синтез электронной плотности достаточно хорошо отразил модель структуры, практическое же отсутствие паразитных пиков и вполне удовлетворительное соответствие «истинных» максимумов $\rho(x, y, z)$ задаваемым атомным функциям можно было считать достаточным аргументом в пользу установленной химической формулы $Na_4Sc_2Ge_4O_{13}$ для синтезированного Na, Sc-германата. Основные межатомные расстояния приведены в

табл. 2.

^{*} Наличие в химической формуле Na, Ge, Sc установлено рентгеноспектральными тестами и подтверждено качественным химическим анализом (аналитик Е. Н. Емельянова).

В Gе-тетраэдрах средние Ge — О 1,73 и О — О 2,84 Å. Максимальные отклонения межатомных расстояний от этих средних составляют 6,9 и 10% соответственно. В достаточно правильном Sc-октаэдре расстояния почти не отличаются от ранее известных (4 , 5). Среднее Sc — О 2,12 Å при крайних 1,91—2,29 Å. У четырех независимых атомов Na координационные числа различны. Для Na₁ и Na₂ отчетливо выделяются шесть кратчайших расстояний Na — О в сравнительно узких пределах: Na₂ — О 2,45—2,53 Å при ближайшем седьмом 2,89 Å, Na₄ — О 2,31—2,70 Å, следующие по величине расстояния 3,02 Å. Форма Na₁— и Na₂-полиэдров — искаженные октаэдры. Для атомов Na₃, Na₄ характерна тенденция к еще более низкой тетраэдрической координации: у четырех связей Na₄ — О почти равные длины в пределах 2,36—2,47 Å при расстояниях от Na₄ до следующих атомов О 2,65; 2,81; 2,87; 2,89, у Na₃-полиэдра одно укороченное до O₁₂ (2,17 Å) и три практически равных (2,41—2,46) при следующих 2,95; 3,07 Å.

Координаты базисных атомов

Таблица 1

Атом	x/a	ÿ/b	z/c	B_j	Атом	x/a	y/b	z/c	B_j
Ge1 Ge2 Ge3 Ge4 Sc1 Sc2 Na1 Na2 Na3 Na4 O1	0,020 0,309 0,440 0,229 0,170 0,077 0,331 0,420 0,053 0,194 0,122 0,322	0,154 0,332 0,198 0,174 0,197 0,351 0,177 0,158 0,191 0,294 0,004 0,023	+0,000 0,227 0,814 0,041 0,624 0,617 0,421 0,212 0,832 0,025 0,027	$\begin{array}{c} -0.1 \\ -0.28 \\ -0.21 \\ -0.39 \\ -0.13 \\ -0.34 \\ 0.97 \\ 0.65 \\ -0.02 \\ 0.76 \\ -0.22 \\ -0.10 \\ \end{array}$	O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13	0.211 0,223 0,396 0,280 0,176 0,034 0,058 0,018 0,355 0,075 0,465	0,230 0,473 0,421 0,315 0,118 0,223 0,062 0,429 0,401 0,378 0,252	0,157 0,984 0,213 0,345 0,686 0,880 0,521 0,056 0,856 0,354 0,709	$\begin{array}{c} 0,95 \\ -0,43 \\ -0.65 \\ -0.48 \\ 1,38 \\ -1,81 \\ 0,02 \\ +0,89 \\ -0.72 \\ +0.50 \\ -0.87 \end{array}$

Таблица 2

Межатомные расстояния

Ge ₁ -тетраэдр	Ge₂-тетраэдр	Ge ₃ -тетраэдр	G е4-тетраэдр	Sc₁-октаэдр						
$O_{10}=1,71$	$\begin{array}{c} O_5 = 1,71 \\ O_6 = 1,77 \\ O_3 = 1,81 \\ O_7 - O_3 = 2,70 \\ O_5 - O_6 = 2,75 \\ O_5 - O_3 = 2,83 \\ O_7 - O_6 = 2,91 \\ O_7 - O_5 = 2,93 \end{array}$	$ O_8 - O_{11} = 2,67 O_8 - O_{13} = 2,69 O_8 - O_{12} = 2,74 O_{13} - O_{11} = 2,78 $	$Ge_{4} - O_{2} = 1,72 \\ O_{3} = 1,71 \\ O_{1} = 1,82 \\ O_{4} = 1,83 \\ O_{3} - O_{1} = 2,65 \\ O_{3} - O_{2} = 2,83 \\ O_{2} - O_{1} = 2,86 \\ O_{3} - O_{4} = 2,86 \\ O_{1} - O_{4} = 3,04 \\ O_{2} - O_{4} = 3,12 \\ O_{3} - O_{4} = 3,12 \\ O_{5} - O_{4} = 3,12 \\ O_{7} - O_{8} - O_{8} - O_{8} - O_{8} - O_{8} - O_{8} \\ O_{8} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} - O_{9} - O_{9} - O_{9} - O_{9} \\ O_{9} -$	$Sc_{1}-O_{11}=1,91$ $O_{6}=2,03$ $O_{12}=2,05$ $O_{4}=2,17$ $O_{2}=2,18$ $O_{9}=2,29$						
Sc₂-октаэдр	Na ₁ -полиэдр	Na₂-полиэдр	Nа₃-полиэдр	Nа₄-полиэдр						
$Sc_2 - O_5 = 2,00$ $O_{11} = 2,07$ $O_{13} = 2,10$ $O_7 = 2,11$ $O_2 = 2,15$ $O_6 = 2,20$	$ Na_{1} - O_{1} = 2,31 O_{4} = 2,37 O_{13} = 2,38 O_{7} = 2,45 O_{8} = 2,58 O_{1} = 2,70 $	$\begin{array}{c} O_1 = 2,46 \\ O_4 = 2,47 \\ O_{10} = 2,49 \\ O_{12} = 2,51 \end{array}$	$O_5 = 2,46$	$0_{8} = 2,43$ $0_{4} = 2,47$						

Кристаллическая постройка исследованного Na, Sc-германата интересна прежде всего тем, что в нее входит новый ранее не известный в кристаллохимии силикатов (германатов) линейный радикал [Ge_4O_{13}] *, который строго в арифметической прогрессии продолжает ряд островных радикалоз: $XO_4 - X_2O_7 - X_3O_{10} - X_4O_{13} - \dots$

Архитектурный мотив $Na_4Sc_2[Ge_4O_{13}]$ четко представляется проекцисй вдоль короткой оси b (рис. 1), на которой он формально расчленяется на четыре (на ячейку) параллельные [001] цепочки. Повторяющееся звено цепочки состоит из двух спаренных (по общему ребру) Sc-октардров

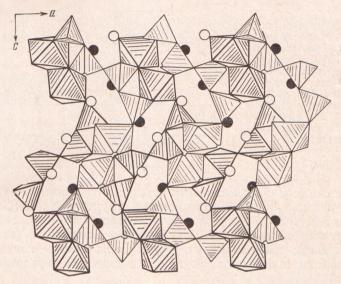
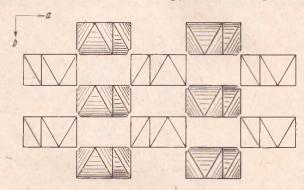


Рис. 1. $Na_4Sc_2Ge_4O_{13}$. Проекция xz, параллельная плоскости скольжения a и нормальная клиноплоскости n. Вдоль [001] тянутся цепочки из тетрагрупп, связанных сдвоенными по ребру $[Sc_2O_{10}]$ октаэдрами

 $[Sc_2O_{10}]$ и линейной тетрагруппы $[Ge_4O_{13}]$. Такие слегка гофрированные цепочки располагаются весьма близко к плоскостям xz=a, находящимся на уровнях b/4 и 3b/4 (светлые и заштрихованные полиэдры). Впутри каждой такой цепочки связь между парами $[Sc_2O_{10}]$ и тетрагруппами $[Ge_4O_{13}]$ смотрится не очень хорошо и кристаллохимически, и даже физически предпочтителен иной аспект структуры.


В слюдоподобных минералах с дискретными трехэтажными пакетами мы различаем катионные сердечники из атомов в октаэдрах и облекающие их с двух сторон кольчуги из тетраэдров. Между пакетами помещается разреженный слой из щелочных или щелочноземельных катионов. В Ва-силикате — санборните $\mathrm{Ba_2Si_2O_5}$ (и его «модельном» аналоге $\mathrm{RbBe_2F_5}$) (7) последние слои отсутствуют, и их функции передаются сердечнику из Ва-катионов, в соответствии с чем кольчуги — сетки перестают быть односторонними — полярными и перед нами просто чередование катионных слоев (октаэдры) и анионных из тетраэдров, которые по очереди смотрят своими носителями и к верхнему и к нижнему слою из октаэдров (7). Соответственный мотив нетрудно увидеть и в Na, Sc-германате в каждой половине рис. 1 — вдоль оси с. Катионный мотив представлен парами Sc-октаэдров среди Na-октаэдров, анионный сетками из Ge-тетраэдров, разорвавшимися на почти линейные тетрагруппы.

Рассекающие («двоящие») каждый слой плоскости скольжения xz=a делают оба слоя двусторонними (половина тетраэдров смотрит носиками

^{*} Аналогичный тетраэдрический радикал [$\mathrm{Cr_4O_{13}}$] был зафиксирован в хроматах (6).

вверх вдоль оси y, половина — вниз, соответственно меняется ориентация верхних граней Sc-октаэдров). Семейством плоскостей (001) такая санборнитоподобная структура разрезается на отсеки толщиной в c/2 (рис. 1), взаимно смещенные на b/2, т. е. слой из октаэдров одного отсека продолжается слоем из тетраэдров соседнего отсека с результатом — теми разнородными цепочками, которые отмечались в начале описания структуры. Одноименные структурные фрагменты из разных отсеков взаимно связаны клиноплоскостями yz = n и винтовыми осями 2_1 . Группы [Sc₂O₁₀] своими

Рис. 2. Схема чередования Sc, Ge-балок в проекции xy. Темные группы $[Sc_2O_{10}]$ расположены на нулевом уровне, светлые — на $z \approx 1/2$. Тетраэдры $[Ge_4O_{13}]$ находятся между трансляционно идентичными вдоль оси с спаренными Sc-октаэдрами

вершинами связаны с аналогичными четырьмя группами из двух соседних отсеков на каждом уровне. В этом аспекте структура Na₄Sc₂[Ge₄O₁₃] представляется укладкой из цепочек — балок, которые все параллельны [400]. Торцы их разрезают плоскости (001) в шахматном порядке (схема рис. 2), т. е. балки любого уровня (вдоль а и b) связаны с выше- и нижележащими общими ребрами, в промежутках такого шахматного чередования Sc, Geбалок располагаются атомы Na.

В заключение отметим, что зафиксированный новый вид островного радикала $[Ge_4O_{13}]$ на рис. 1 легко разбивается на две диортогруппы $[Ge_2O_7]$, каждая из которых «натянута» на один из октаэдров комплекса $[Sc_2O_{10}]$ по правилам II главы кристаллохимии силикатов (германатов): как это уже имело место в кристаллической структуре основного K, Sc-диортогерманата $K_2Sc_2[Ge_2O_7]$ (OH) $_2$ (5).

Институт кристаллографии им. А. В. Шубникова Академии наук СССР Москва Поступило 28 III 1973

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Б. Товбис, Б. М. Щедрин, Комплекс программ для решения задач структурного анализа кристаллов, 1, М., 1968. ² С. В. Борисов, Кристаллография, 9, 5, 603 (1964). ³ Э. А. Кузьмин, В. П. Головачев, Н. В. Белов, ДАН, 192. № 1, 86 (1970). ⁴ С. М. Скшат, В. И. Симонов, Н. В. Белов, ДАН, 184, № 2 (1969). ⁵ Ю. А. Горбунов, Б. А. Максимов, Н. В. Белов, ДАН, 208, № 1 (1973). ⁸ В. Н. Головачев, Э. А. Кузьмин и др., ДАН, 192, № 6, 1272 (1970). ⁷ В. В. Илюхин, Н. В. Белов, Кристаллография, 6, 6, 847 (1961).