УДК 541.6+543.422

ХИМИЯ

Член-корреспоидент АН СССР Б. Н. ЛАСКОРИН, В. В. ЯКШИН, Б. Н. ШАРАПОВ

ИССЛЕДОВАНИЕ МЕЖМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ И ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ АМИДОВ О,О-ДИАЛКИЛФОСФОРНЫХ КИСЛОТ

Образование межмолскулярных водородных связей (м.в.с.) часто является решающим фактором, определяющим пространственную структуру органических соединений. Наиболее изучено влияние м.в.с. на свойства амидов карбоновых кислот, которые широко распространены в природе и входят в состав важнейших природных и синтетических предуктов. Однако структура и свойства амидов кислот фосфора исследованы мало, хотя эти производные представляют несомненный практический интерес (1).

Настоящее сообщение посвящено изучению термодинамических характеристик процесса образования м.в.с. и исследованию пространственной структуры амидов диалкилфосфорных кислот (RO) $_2$ P(O) NHR' в органических растворителях. Исходные продукты получены взаимодействием диалкилхиорфосфатов с алкиламинами в инертных растворителях в присутствии ипридина как акцептора хлористого водорода и очищены вакуумной ректификацией. Обзорные и.-к. спектры изученных соединений записаны в области $4000-700~{\rm cm^{-1}}$ в тонкой пленке и концентрированных растворах на приборе ИКС-22, температурная зависимость оптической плотности (A) в области $3600-3100~{\rm cm^{-1}}$ определялась на приборе Unicam SP-700 A с использованием термостатирующего блока в интервале температур $30-70^{\circ}$ с точностью $\pm 0,1^{\circ}$, в кюветах толщиной $l=5-40~{\rm mm}$, в растворе очищенного ССІ $_4$.

Расчет термодинамических параметров процесса образования м.в.с. производился по $(^2)$, оценка ошибки (Δ) с использованием критерия, не связанного с величиной среднеквадратичной погрешности, по $(^3)$. Измерение молекулярного веса (M) производилось изопнестическим методом на приборе Hitachi Perkin — Elmer-115 в диапазоне концентраций 10^{-2} — 10^{-3} г-мол / л в растворе очищенного CCl_4 . Численные значения M рассчитывались экстраполяцией к бесконечному разбавлению, в область спра-

ведливости закона Рауля.

В п.-к. спектрах (I—VII) (см. табл. 1) в концентрированном состоянии наблюдается широкая интенсивная полоса в области 3190-3170 см⁻¹, относящаяся к валентным колебаниям связи N—H, ассоциированной м.в.с. $v_{\rm NH}^{\rm ac}$), и полоса в области 1220-1235 см⁻¹, относящаяся к валентным колебаниям ассоциированной фосфорильной группировки $v_{\rm P=0}^{\rm ac}$. При переходе от конденсированного состояния к разбавленным растворам наблюдается понижение интенсивности $v_{\rm NH}^{\rm ac}$ и $v_{\rm P=0}^{\rm ac}$, и появляются возрастающие полосы при 3380-3390 и 1245-1260 см⁻¹, относимые нами к валентным колебаниям свободных связей N—H ($v_{\rm NH}^{\rm cB}$) и P=0 ($v_{\rm P=0}^{\rm cB}$) соответственно. В пределах погрешности измерений частоты $v_{\rm NH}$ и $v_{\rm P0}$ для каждого из исследованных веществ остаются постоянными при изменении концентрации растворов вплоть до 10^{-4} г-мол / л.

Функциональное выражение спектральных изменений $v_{\rm Y-H}$ и $v_{\rm P=0}$ при образовании м.в.с. фосфорамидатами имеет вид $A_{\rm ac}$ / $A_{\rm cB}={\rm th}\,({\rm lg}\,C\,/\,a)+b$, где $A_{\rm ac}$ и $A_{\rm cB}-$ оптические плотности полос поглощения, образующих м.в.с.

и свободных групп соответственно; C — концентрация амида, г-мол / л, a и b — эмпирические коэффициенты. Полученное уравнение хорошо передает физический смысл процесса образования м.в.с., так как th x является нечетной симметричной функцией и при $x \to \pm \infty$ асимптотически приближается к конечному пределу, где все молекулы — ассоциаты одного и того же вида. Симбатное изменение $A_{\rm NH}$ и $A_{\rm P=0}$ при образовании м.в.с. позволяет сделать заключение, что в амидах кислот фосфора происходит образование связи $N-H\ldots O=P$, где донором является протон амидной группы, а акцептором — кислород фосфорильной группировки.

Таблица 1 Термодинамические параметры процесса самоассоциации соединений типа $(RO)_2 P(O) NHR'$

	R	R'	К ²⁹⁸ д. м.мол-1	—∆ <i>Н</i> °, ккал·мол ^{–1}	—∆Ѕ⁰, э.ед.	— ΔG_{208}^{0} , ккал-мол ⁻¹
1 11 111 1V V VI VII	$\begin{array}{c} C_4H_9 \\ C_4H_9 \\ C_4H_9 \\ C_4H_9 \\ C_4H_9 \\ C_6H_{13} \\ C_8H_{17} \end{array}$	H CH ₃ C ₃ H ₇ C ₄ H ₉ C ₁₂ H ₂₅ CH ₃ CH ₃	160 40,3 13,5 19,0 * 16,8 15,0 89,2	$\begin{array}{c} 6,4\pm0,5\\ 7,1\pm0,6\\ 5,5\pm0,5\\ 5,4\pm0,5\\ 1,8\pm0,2\\ 2,4\pm0,2\\ 1,6\pm0,1 \end{array}$	$\begin{array}{c} 10,6\pm1,0\\ 16,8\pm1,5\\ 13,6\pm1,2\\ 12,3\pm1,1\\ 0,2\pm0,1\\ 2,3\pm0,2\\ 2,6\pm0,2 \end{array}$	$3,2\pm0,8$ $2,1\pm0,9$ $1,5\pm0,8$ $1,8\pm0,8$ $1,7\pm0,4$ $1,7\pm0,8$ $2,4\pm0,4$

^{*} $K_{\rm ac}^{313}=24.5$ л-мол $^{-1}$. Измерением молекулярного веса получено $K_{\rm ac}^{313}=26.9$ л-мол $^{-1}$.

Измерения молекулярного веса II и IV при разбавлении в ССІ, показали, что при концентрациях $<2.5\cdot 10^{-3}$ г-мол / л в растворе присутствует практически один мономер (>95%), а экспериментальный молекулярный вес при бесконечном разбавлении с хорошей точностью совпадает с рассчитанным по химической формуле. Так, для II: $M_{\rm эксп}=232\pm5\%$ $M_{\rm расч}=223$; для IV: $M_{\rm эксп}=266\pm5\%$, $M_{\rm расч}=265$. С повышением концентрации молекулярный вес соединений увеличивается, приближаясь к удвоенному в концентрированных растворах. Это означает, что для фосформидатов в огранических растворителях характерно равновесие мономер — димер и степень ассоциации определяется концентрацией вещества в растворе.

Структуру образующихся ассоциатов можно представить в виде линейных А или циклических димеров В

$$R$$
 $O ... H-N$
 $O ... H-N$
 $(RO)_2 P$
 $P(OR)_2$
 $(RO_2) P$
 $N-H ... O$
 (B)

Применяя к исследуемым системам критерий Пиментела и Мак-Клеллана (4) : $\frac{A_{ac}}{A_{cb}^2}$ (C) = const, приходим к заключению, что в изученном диапазо-

не концентраций $(10^{-1}-10^{-3}\text{ мол/л})$ осуществляется равновесие типа мономер — циклический димер B.

Прочность образующихся м.в.с. определяется изменением свободной энергии процесса ΔG^0 и зависит от структуры и длины радикалов при фосфоре R и азоте R'. В табл. 1 приведены термодинамические параметры процесса самоассоциации амидов диалкилфосфорных кислот в CCl_4 в зави-

симости от длины радикалов R и R', рассчитанные по уравнению Вант-Гоффа. С увеличением длины радикала R' при постоянном значении R= = C_1H_9 в ряду I-V наблюдается симбатное уменьшение энтальпийного ΔH^0 и энтропийного ΔS^0 факторов уравнения Вант-Гоффа. Наличие компенсационного эффекта приводит к слабому изменению ΔG^0 и K_{ac} в указанном ряду при переходе от метильного к додецильному радикалу R'. Та же тенденция наблюдается и в случае увеличения радикала R при фосфоре при постоянном значении $R'=\mathrm{CH_3}$ в ряду $\mathrm{II}<\mathrm{VI}<\mathrm{VII}$. В этом случае ΔG^0 процесса остается постоянным при переходе от дибутил- к диоктилфосфорной кислоте.

Таким образом, структуру амидов диалкилфосфорных кислот в неполярных растворителях можно представить в виде циклических димеров, связанных межмолекулярной водородной связью. Донором протонов в этой связа выступает протон амидной группы, а акцептором служит кислород фосфорильной группировки. Энергия образующейся м.в.с. мало меняется с изменением длины радикала при фосфоре и азоте и составляет величину

2-3 ккал/моль.

Институт физики Земли им. О. Ю. Шмидта Академии наук СССР Москва Поступило 5 II 1973

цитированная литература

¹ Н. Н. Преображенская, Усп. хим., 41, 96 (1972). ² G. Allen, J. G. Watkinson, K. H. Webb, Spectrochim. acta, 22, 807 (1966). ³ О. Н. Кассапдрова, В. В. Лебедев, Обработка результатов наблюдений, М., 1970. ⁴ Дж. Пиментел, О. Мак-Клеллан, Водородная связь, М., 1964.