Литература

- 1 Лучицкая, Е. С. Функциональные особенности гемодинамики подростков в условиях различной двигательной активности: дис... канд. биол. наук: 03.00.13 / Лучицкая Елена Сергеевна; Ярослав. гос. пед. ун-т им. К. Д. Ушинского. Ярославль, 2007. 128 с.
- 2 Николаев, А. А. Двигательная активность и здоровье современного человека : учеб. пособие для преподавателей и студентов высших учебных заведений физической культуры / А. А. Николаев. Смоленск : СГИФК, 2005. 45 с.
- 3 Основы физиологии сердца : учеб. пособие / В. И. Евлахов [и др.]. СПб : СпецЛит, 2015.-24 с.
- 4 Буйкова, О. М. Функциональные пробы в лечебной и массовой физической культуре: учебное пособие / О. М. Буйкова, Г. И. Булнаева. Иркутск: ИГМУ, 2017. 24 с.

УДК 630*231

Е. С. Дроздов

ПОДРОСТ ДУБА В СОСНЯКАХ МШИСТЫХ

В статье анализируются факторы развития подроста дуба, описаны признаки сосняков мишстых, выделены лесные ассоциации, приведена характеристика насаждений, количественная и качественная характеристика подроста дуба под пологом сосновых насаждений в лесном фонде Ченковского лесничества Кореневской экспериментальной лесной базы, дана оценка возобновлению дуба.

Проблема восстановления дуба рассматривалась многими учеными. Установлено, что обычно самосев и в дальнейшем подрост дуба погибает от недостатка света и влаги [1, с. 18]. Эдафические условия мест произрастания сосновых насаждений не препятствуют возобновлению в них дуба. Положение подроста под пологом леса зависит от различных факторов. Для дуба решающим фактором является недостаток питательных веществ в почве при совместном росте с сосной на мелких супесях. Дуб не может расти под пологом «пород-пионеров» из-за своего светолюбия. Дуб лучше всего возобновляется параллельно, совместно с сосной [2, с. 312]. Условия освещенности в сосняках благоприятны для его развития.

Цель данной статьи – дать оценку подросту дуба в сосняках мшистых.

Для выполнения исследования использованы лесоустроительные материалы Ченковского лесничества Кореневской экспериментальной лесной базы Института леса НАН Беларуси. Обследованы выдела сосняков мшистых (тип лесорастительных условий A_2), учтен подрост под пологом этих насаждений.

Сосняки мшистые — одни из наиболее распространенных типов сосновых лесов. С учетом рекомендаций И. Д. Юркевича [3, с. 8] выделены важнейшие ассоциации: сосняк березово-мшистый, дубняково-мшистый, осиново-мшистый, вересково-мшистый, чернично-мшистый и бруснично-мшистый. Преобладающим классом бонитета сосны является ІІ. Примерный состав древостоя: 7–10С до 3Б, Ос, Олч, Д. Рельеф равнинный, слегка волнистый, местоположение повышенное. Для этого типа леса характерны дерново-подзолистые, песчаные, иногда легко супесчаные, свежие почвы. Подлесок представлен рябиной, крушиной ломкой, ракитником русским. Живой напочвенный покров состоит из мха (Шребера и дикранум), вереска, брусники, плауна трехколоскового, черники, седмичника европейского.

Под пологом леса идет естественное возобновление дуба (таблица 1).

Таблица 1 – Характеристика сосновых насаждений и подроста

						Подрост					
Участок	Площадь, га	Происхождение	Состав насаждения	Возраст, лет	Полнота	состав	возраст, лет	высота, м	густота, тыс. шт./гашт./га	жизнеспособность	
1	2	3	4	5	6	7	8	9	10	11	
1	1,1	искусственное	9C1C	60	0,8	10Д	25	5,0	1,0	неблагонадежный	
2	0,5	естественное	10C	110	0,6	10Д	20	4,0	1,0	неблагонадежный	
3	1,0	естественное	7С2С1Б	70	0,7	10Д	20	3,0	0,5	неблагонадежный	
4	1,2	искусственное	10С+Б	71	0,7	10Д	25	4,0	1,0	неблагонадежный	
5	4,1	искусственное	10С+Б+Д	85	0,7	10Д	25	5,0	0,5	неблагонадежный	
6	0,6	искусственное	10C	80	0,7	10Д	25	6,0	0,5	неблагонадежный	
7	0,8	искусственное	10C	80	0,8	10Д	20	4,0	0,5	неблагонадежный	
8	4,4	искусственное	10C	80	0,8	10Д	25	6,0	0,5	неблагонадежный	
9	0,8	искусственное	10С+Б	65	0,8	10Д	25	5,0	0,5	неблагонадежный	
10	1,1	искусственное	10С+Б+Ос	65	0,8	10Д	20	4,0	0,5	неблагонадежный	
11	5,1	искусственное	10C	65	0,8	10Д	15	3,0	0,5	неблагонадежный	
12	3,9	искусственное	10C	75	0,8	10Д	20	4,0	0,5	неблагонадежный	
13	1,6	искусственное	10С+Б+Ос	65	0,8	10Д	20	4,0	0,5	неблагонадежный	
14	2,3	искусственное	10С+Б	65	0,8	10Д	25	5,0	0,5	неблагонадежный	
15	2,7	естественное	9С1Б	90	0,7	10Д	35	9,0	0,5	неблагонадежный	
16	9,6	естественное	10С+Б	90	0,7	10Д	30	8,0	0,5	неблагонадежный	
17	2,1	естественное	9С1Б+Д	90	0,6	10Д	30	7,0	0,5	неблагонадежный	
18	5,6	естественное	10С+Б+Д	70	0,7	10Д	25	6,0	0,5	неблагонадежный	
19	5,4	естественное	9С1Б+Д	90	0,6	10Д	30	7,0	0,5	неблагонадежный	
20	0,2	искусственное	10C	54	0,8	10Д	20	3,0	0,5	неблагонадежный	
21	0,9	естественное	10C	90	0,8	10Д	25	5,0	0,5	неблагонадежный	
22	2,7	естественное	10C	90	0,8	10Д	25	5,0	0,5	неблагонадежный	
23	2,4	искусственное	10C	71	0,8	10Д	20	3,0	1,0	неблагонадежный	
24	4,1	естественное	10С+Б	65	0,7	10Д	20	5,0	0,5	неблагонадежный	
25	0,6	искусственное	10С+Б	61	0,6	10Д	15	3,0	1,0	неблагонадежный	
26	4,8	естественное	10С+Б	70	0,7	10Д	20	5,0	0,5	неблагонадежный	
27	0,1	естественное	10С+Б	70	0,7	10Д	20	5,0	0,5	неблагонадежный	
28	0,9	естественное	10С+Б	70	0,7	10Д	20	5,0	0,5	неблагонадежный	
29	2,7	естественное	10C	75	0,7	10Д	20	5,0	0,5	неблагонадежный	
30	0,3	искусственное	10C+C	46	0,7	10Д	20	4,0	0,5	неблагонадежный	
31	2,6	естественное	10С+Б+Олч	85	0,6	10Д	25	6,0	0,5	неблагонадежный	
32	1,6	естественное	10С+Б	70	0,7	10Д	20	5,0	0,5	неблагонадежный	

Учтенная площадь сосняков мшистых составила 77,8 га. Это насаждения искусственного (лесные культуры) и естественного происхождения. Полнота варьируется от 0,6 до 0,8 (насаждения средне- и высокополнотные). Возраст составляет 46–110 (средневозрастные, приспевающие и спелые). Состав подроста 10 Д, высота 3–9 м, возраст 15–30 лет. Количество подроста (густота) составила 0,5–1,0 тыс. шт./га. Оценка возобновления дуба — неудовлетворительное. Жизнеспособность подроста на всех участках — неблагонадежный. Это говорит о том, что дуб никогда не сменит сосну, будет выполнять роль подлеска, подрост служит для сохранения биоразнообразия.

Литература

1 Манаенков, А. С. Состояние и перспектива возобновления защитных лесонасаждений на южном черноземе / А. С. Манаенков, М. В. Костин // Лесное хозяйство. — 2009. — № 3. — С. 18—20.

2 Нестеров, В. Г. Общее лесоводство : учебник для лесотехн. и лесохоз. вузов. — 2-е изд., испр. и доп. / В. Г. Нестеров. — М. ; Ленинград : Гослесбумиздат, 1954. — 656 с.

3 Юркевич, И. Д. Выделение типов леса при лесоустроительных работах / И. Д. Юркевич. – Минск : Наука и техника, 1980. – 120 с.

УДК 577.151:631.64:546.56

Ю. Д. Зенкевич

ВЛИЯНИЕ МЕДИ НА АКТИВНОСТЬ ПОЧВЕННОЙ ПОЛИФЕНОЛОКСИДАЗЫ

В статье рассмотрено влияния меди на активность почвенных ферментов. Высокая чувствительность полифенолоксидазной активности к соединениям меди служит диагностическим критерием степени загрязненности почв данным элементом, позволяет оценить пригодность различных почвенных ферментов в качестве биомаркеров загрязнения и разработать критерии для выбора наиболее информативных показателей состояния почвенной экосистемы.

В настоящее время исследования по влиянию различных доз тяжелых металлов на активность почвенных ферментов представляются актуальными, так как открывают перспективы использования ферментативной активности как критерия загрязненности почвы [1].

Важнейшим фактором почвообразования является ферментативная активность почв [2]. Почвенные ферменты катализируют многочисленные реакции превращения органического вещества: гидролиз, расщепление, окисление и другие реакции, в результате которых почвы обогащаются доступными для растений и микроорганизмов питательными веществами.

Полифенолоксидаза (П Φ O) — это фермент, относящийся к классу оксидоредуктаз, играет важную роль в почве, участвуя в процессах разложения органических веществ и биодеградации. П Φ O катализирует окисление фенольных соединений, что способствует образованию более сложных молекул и улучшает доступность питательных веществ для растений. Основными источниками полифенолоксидазы в почве являются микроорганизмы, такие как бактерии и грибы, а также растительные остатки.

Из многочисленных показателей биологической активности почвы важное значение имеют почвенные энзимы, которые вносят большой вклад в формирование ее плодородия, осуществляя последовательные биохимические превращения органических остатков в ней. Этот процесс нарушается при загрязнении почв ТМ [3].