С увеличением концентрации меди до 5 ПДК наблюдается наиболее выраженное снижение активности ферментов. Это подчеркивает дозозависимый характер токсического воздействия тяжелых металлов на ферментные системы.

Полученные результаты подчеркивают необходимость мониторинга загрязнения почв тяжелыми металлами и разработки мероприятий по защите почвенных экосистем от их токсического воздействия, указывают важность поддержания здоровья почвы и сохранения окружающей среды.

Литература

- 1 Поволоцкая, Ю. С. Общее представление о почвенных ферментах / Ю. С. Поволоцкая // Международный журнал гуманитарных и естественных наук. Новосибирск. 2020. № 1. С. 21–23.
- 2 Дроздова, Н. И. Анализ влияния тяжелых металлов на активность пероксидаз почв / Н. И. Дроздова, А. А. Шихалова // Эпоха науки. 2023. № 36. С. 411–418.
- 3 Новоселова, Е. И. Ферментативная трансформация органических остатков в почвах, загрязненных тяжелыми металлами / Е. И. Новоселова, О. О. Волкова, Р. Р. Турьянова // Экология урбанизированных территорий. − 2019. № 1. С. 75–81.

УДК 575.113.3:572.512.3

Т. В. Игнатова

ОПРЕДЕЛЕНИЕ МЫШЕЧНОЙ РАБОТОСПОСОБНОСТИ У СТУДЕНТОВ БИОЛОГИЧЕСКОГО ФАКУЛЬТЕТА

Статья посвящена исследованию мышечной работоспособности студентов биологического факультета методом кистевой динамометрии. Были проведено по десять измерений силы мышечного сжатия для обеих рук 20 юношей и 20 девушек с использованием электронного кистевого динамометра. Результаты и их анализ показали, что юноши работоспособнее девушек и имеют большую разницу в показателях обеих рук между собой, при этом девушки менее утомляемы, прежде всего это касается их правой руки.

В современном образовании физическая активность студентов играет ключевую роль в поддержании их здоровья и работоспособности. При этом кистевые мышцы больше всего участвуют в образовательном процессе, поскольку студенты записывают учебный материал на занятиях несколько часов подряд. Мышечный аппарат кисти состоит из около 33 мышц предплечья, связанных с пальцами, включая червеобразные, межкостные и мышцы пальцев, которые отвечают за сгибание и разгибание [1].

Физиология мышечной деятельности изучает изменения функций организма при физической активности, такие как регуляция силы сокращений и потребность в кислороде. При интенсивной нагрузке увеличивается скорость кровотока и расширяются сосуды, что способствует удалению продуктов распада. Регулярные тренировки способствуют гипертрофии мышечных волокон и повышают работоспособность [2].

Мышечная работоспособность зависит от морфологических свойств и физиологического состояния, а энергия обеспечивается окислением углеводов и жиров с основным источником – АТФ. Утомление, проявляющееся в снижении силы и выносливости, связано с истощением запасов гликогена и накоплением метаболитов [3].

Интенсивность и продолжительность работы влияют на физиологические и психологические изменения: при высоких нагрузках активируются системы, вырабатывающие адреналин и норадреналин, что увеличивает частоту сердечных сокращений и уровень глюкозы. Умеренные нагрузки улучшают циркуляцию лейкоцитов и антител, повышая иммунитет, тогда как чрезмерные нагрузки могут его подавлять [4].

Исследования проводились в период с сентября по декабрь 2024 года с целью определить уровень мышечной работоспособности у студентов биологического факультета и выявить факторы, влияющих на его изменение. В исследовании приняли участие 20 юношей и 20 девушек, что позволило получить сбалансированные данные для анализа.

Методика исследования основывалась на использовании кистевой динамометрии для измерения физической работоспособности мышц. Измерения проводились с помощью электронного динамометра, предоставленного лабораторией учебного заведения. Каждый участник должен был сжать динамометр 10 раз с максимальной силой, сначала левой, затем правой рукой, с частотой одного сжатия каждые 5 секунд. Эти измерения фиксировались в виде таблиц. Затем для каждого студента были рассчитаны показатели работоспособности и утомляемости обеих рук.

Работоспособность показывает общую выносливость мышц и вычисляется по формуле 1:

$$P = (f_1 + f_2 + f_3 + f_n) / n, (1)$$

где n — это количество сжатий динамометра;

 f_n – показания динамометра в Ньютонах при каждом сжатии.

Утомляемость объясняет, насколько интенсивно с каждым этапом у студента уменьшалась сила сжатия и вычисляется по формуле 2:

$$S = ((f_1 - f_{min}) : f_{max}) \cdot 100,$$
 (2)

где f_1 – это показание динамометра первого сжатия;

 f_{min} — показание динамометра наименьшего по силе сжатия;

 f_{max} — показание динамометра наибольшего по силе сжатия.

При помощи полученных значений силы мышечной кисти для юношей были рассчитаны показатели работоспособности (P), утомляемости (S) мышц на обеих руках, которые представлены в таблице 1.

Таблица 1 – Сравнение показателей работоспособности и утомляемости обеих рук у юношей и девушек

	P				S, %			
n	Юноши		Девушки		Юноши		Девушки	
	П	Л	Π	Л	П	Л	П	Л
1	2	3	4	5	6	7	8	9
1	34,05	32,35	21,50	19,58	35	19	25	17
2	35,25	27,00	31,30	29,45	19	80	27	25
3	25,45	18,15	28,65	20,70	77	16	33	42
4	29,85	29,85	25,10	23,20	46	46	38	36
5	39,25	28,05	28,45	22,25	29	81	33	14
6	39,50	29,00	29,50	27,80	20	44	15	12
7	33,35	29,55	26,30	24,80	18	6	28	32

Окончание таблицы 1

1	2	3	4	5	6	7	8	9
8	31,25	27,35	26,05	15,95	35	29	28	30
9	22,90	24,80	15,95	14,65	57	15	39	75
10	25,65	21,10	23,75	19,90	68	35	15	34
11	26,90	21,55	18,85	18,10	24	42	47	42
12	24,15	21,95	18,20	20,75	26	19	85	63
13	23,85	19,45	23,45	16,70	65	38	16	80
14	22,65	24,70	25,35	29,50	48	61	25	10
15	26,30	24,00	24,80	25,25	16	18	4	9
16	22,35	27,10	23,10	25,95	45	47	31	6
17	23,45	24,55	24,20	26,70	18	7	13	63
18	23,65	30,40	27,30	23,50	26	13	28	29
19	23,80	23,85	25,50	23,40	23	31	7	18
20	25,85	26,10	23,40	25,15	15	28	20	35
min	22,35	18,15	15,95	14,65	15	6	4	6
max	39,50	32,35	31,30	29,50	77	81	85	80
среднее	27,97	25,54	24,54	22,66	36	34	28	34
ошибка средней	1,24	0,86	0,86	0,97	4	5	3	4
стандартное отклонение	5,56	3,83	3,83	4,33	19	22	17	21

Анализируя данные из таблицы 1, можно сказать, что у юношей работоспособность правой руки выше, чем левой, а утомляемость правой руки больше, чем левой. У девушек разница между максимальной и минимальной утомляемостью левой руки -81 %, правой -15 %.

Сравнение минимальных, максимальных и средних показателей работоспособности у юношей и девушек биологического факультета представлено на рисунке 1, а утомляемости — на рисунке 2.

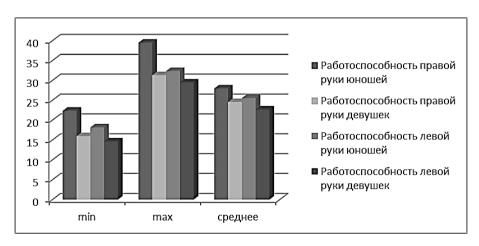


Рисунок 1 — Сравнение минимальной, максимальной и средней мышечной работоспособностей обеих рук юношей и девушек

При анализе столбчатой диаграммы на рисунке 1 можно сделать вывод, что все показатели работоспособности (min, max, среднее) для обеих рук у юношей выше, чем у девушек. При этом правая рука у всех участников значительно работоспособнее левой.

Сравнение минимальных, максимальных и средних показателей утомляемости у юношей и девушек биологического факультета представлено на рисунке 2.

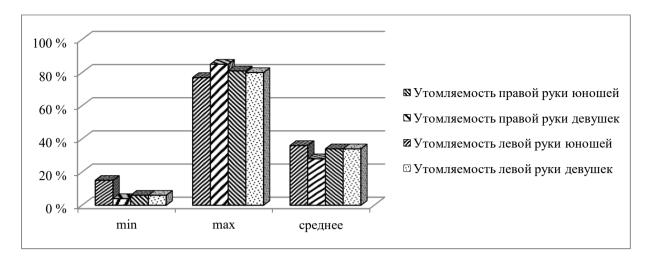


Рисунок 2 — Сравнение минимальной, максимальной и средней мышечной утомляемости обеих рук юношей и девушек

Изучая диаграмму утомляемости на рисунке 2, можно увидеть, что для всех участников разница между минимальными и максимальными показателями очень велика (не меньше 60 %). Юноши более утомляемы (min и среднее значение S них ниже), причем для всех участников разница между утомляемостью левых рук незначительна.

Литература

- 1 Мышцы верхней конечности : учеб.-метод. пособие / сост. Е. С. Блоцкая, И. Г. Роменко, Е А. Рассохина ; Брест. гос. ун-т имени А. С. Пушкина, Каф. анатомии и физиологии человека и животных. Брест : БрГУ им. А. С. Пушкина, 2010.-80 с.
- 2 Физиология мышц : учебно-методическое пособие для самостоятельной работы студентов / сост. Н. Н. Попова, С. С. Артемьева ; М-во спорта РФ, Воронежская гос. академия спорта. Воронеж : Воронежская гос. академия спорта, 2022.-71 с.
- 3 Щетинина, С. Ю. Влияние физической активности на обменные процессы в организме человека / С. Ю. Щетинина // Международный журнал гуманитарных и естественных наук. -2024. -№ 1-2 (88). C. 40-45.
- 4 Артамонов, В. Н. Физиологические факторы, определяющие физическую работоспособность / В. Н. Артамонов. М. : Физкультура и спорт, 1989. 40 с.

УДК 612.821.2

П. А. Капенкова

ОСОБЕННОСТИ ЗРИТЕЛЬНО-МОТОРНОЙ РЕАКЦИИ У СТУДЕНТОВ С РАЗНЫМ ТИПОМ ТЕМПЕРАМЕНТА

Статья посвящена исследованию зрительно-моторной реакции студентов биологического факультета. В ходе исследования установлено, что между студентами с разным типом темперамента имеются достоверные различия величины зрительномоторной реакции. Максимальную скорость реакции имеют сангвиники, они отличаются высокой реактивность и отвечают на действие стимула очень быстро.